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With a modest beginning from developing a model of dynamics of hard liquid 

spheres (Alder et al., 1957), molecular dynamics (MD) simulations have come to a point 

where complex biomolecules can be simulated with precision close to reality  

(Noskov et al., 2007). In this context, a parallel molecular dynamics program for 

simulation of ion channels associated with cellular membranes has been developed. The 

parallel MD code developed is simple, efficient, and easily coupled to other codes such 

as the hybrid molecular dynamics/ brownian dynamics (MD/BD) code developed for the 

study of protein interactions (Ying et al., 2005).  
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The Atom Decomposition (AD) Method was used in partitioning calculations on 

atoms to processors. One of the major impediments in using AD was the relatively large 

size of data that had to be communicated by the processes (Plimpton et al., 1995). 

Replicating only positions of atoms eased the congestion created by communication of 

both force terms and positions of atoms between processes. The performance of the code 

was tested on KcsA, a bacterial potassium channel. The program was written in Fortran 

90 with parallel functions from the library of mpich-1.2.7.  The idle time of processes 

was optimized by message driven ordering of communication. 

The scaling of the parallel program with 2000 – 60,000 atoms was determined 

and compared with the results obtained from the serial program. As expected, the 

parallel program scaled better than the serial program as the number of atoms included 

in the simulation increased from 2000 - 60000. The performance of the parallel program 

was tested on 4-15 processes, for a system comprising 20,000 atoms. The results 

obtained were compared with results from the serial program. It was observed that the 

parallel program scaled better than the serial program as the number of processes 

increased from 4 to 15. When compared with serial program, which had application of 

Newton’s Third Law in calculating force terms once per each pair of atoms, it was 

observed that the parallel program scaled better on 6-15 processes for a physical system 

comprising of 20,000 atoms. 
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CHAPTER 1   Introduction and Background Information 
 

1.1 Theory of Molecular Dynamics 

 

The dynamics of biological (bio) molecules range from local atomic fluctuations 

of the order, 0.01 angstroms/femto (10-15) second, to molecular-scale motions of the 

order, 5 angstroms/micro (10-3) second (Karplus et al., 2002).  Although macroscopic 

properties can be calculated using experimental methods, computer simulations provide 

details of conformational, structural and thermodynamic changes of biomolecules and 

simultaneously track the atomic fluctuations.  On the basis of the structure determined 

by X-ray crystallography and Nuclear Magnetic Resonance (NMR) studies, and with 

the advent of parallel programming on large-scale computing systems with hundreds of 

CPU’s, Molecular dynamics (MD) method is being used extensively to discover time-

dependent behavior of biomolecules.  

MD method can be used to calculate the properties of a defined molecular 

system from equations of motion describing the displacements of individual atoms.  The 

equations of motion are approximated by finite difference schemes and are solved 

numerically yielding changes in positions and velocities of atoms at each time step. A 

typical MD simulation is considered in three steps; (1) initialization (2) equilibration, 

and (3) production. (Karplus et al., 2002) 
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1) Initialization. The first step is specification of initial conditions at time zero. 

This is done by, assuming the initial atomic positions on a lattice and the 

velocities drawn from a Maxwellian distribution based on the system-

temperature.   

2) Equilibration. The next step is to allow the system to move to its equilibrium 

state.   

3) Production. The third step is the actual calculation of the properties of the 

system along its trajectory in space field.  

In canonical ensemble, the simulation can be conducted under constant 

temperature (T), constant number of particles (N) and constant volume (V) case. For a 

classical, Newtonian system, equation of motion can be written as, 

 

∑
<

=−=
ji

iji
i

ii
i rF

dr
dv

dt
trdm )()(

2

2

-----------(1a) 

Where, ‘mi’, ‘ri’, ‘vi’, are the mass, position and velocity of particle ‘i’ at time 

‘t’, ‘Fi’, the total force exerted by the system on the particle ‘i’, and ‘rij’, the distance 

between particles, ‘i’ and ’j’. Applying Finite Difference Scheme to equation (1a) gives 

the set of equations (1b). 
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Δt
2m

Fn
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n+1

2

+
Δt
2m

Fn+1

--------------(1b) 

 

Where, for a particle ‘i’, ‘Δt’, is the time-step; ‘vn’, the initial velocity at time 

t=n; ‘rn’, position at t=n and ‘Fn’, total force at time t=n. At time step t=n+1, velocity, 

position and force, on the particle are calculated as shown in (1b). This is known as 

Verlet Leap Frog algorithm of integration (Ying et al., 2003). 

By the new set of positions obtained, the force components of atoms can be 

calculated from a potential energy function, which describes the physical system 

accurately. Amber (Ponder et al., 2003) and CHARMM (Brooks et al., 2003) are the 

most commonly used potential energy functions in simulation studies of biomolecules. 

The fundamental drawback of MD is that it requires a relatively large 

computational effort in calculating force terms between atoms, raising the 

computational processing time required for simulating biomolecules to weeks and some 

times months.  Parallel calculation of forces drastically reduces the simulation time. 

(Plimpton et al., 1995). 
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1.2 MPI- Message Passing Interface and Portable Parallel Programming 

 

The speed of light and the effectiveness of heat dissipation impose physical 

limits on the speed of a single computer. Moreover, as performance of personal 

computer (PC) has increased and the prices have fallen significantly, it has become 

easier to acquire a cluster of PC’ that are networked together, to develop suitable 

parallel codes to run on the cluster (Gropp et al., 1994). 

The message passing model of parallel programming has a set of processes with 

local memory.  The processes communicate with each other by sending and receiving 

messages. (Gropp et al., 1994) 

MPI is a specific realization of message passing model. It is a library that 

specifies the names, calling sequences and results of subroutines/functions/classes.  The 

programs developed using MPI library functions are compiled with ordinary compilers 

and linked with MPI library.  Communication occurs when a portion of a process’ 

address space is copied into another process’ address space.  Processes are identified by 

their ranks, which are integers from 0 to p-1 where, p is the total number of processes.  

Process is a software term, which refers to the address space, whereas the term 

processor is a hardware term representing a Central Processing Unit (Gropp et al., 

1994).  
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1.3 Physical System for MD - Potassium Channel 

 

The physical system focused for developing the parallel MD code was 

potassium channel pertaining to cell membranes. Potassium channels are made of 

protein atoms in an aqueous environment. The protein atoms on the internal surface of 

the channel are flexible and the water atoms inside the channel are diffusive in nature 

(Karplus et al., 2002).   

Potassium channels let inorganic ions like Na+ and K+ pass in and out of the 

cell membranes. The passage of ions is crucial in intercellular communication and 

signal transduction. Potassium channel is gated and is selective to the passage of 

potassium ion. The recently discovered structure (PDB ID: 1BL8) of  KcsA, a bacterial 

Voltage gated Potassium Channel from Streptomyces Lividians, shown in Figure 1, is 

frequently used for studying Potassium Channels. (Mackinnon et al,. 1998). X-ray 

diffraction studies of crystallized protein structure of KcsA showed that it has a wall 

made up of four identical protein monomers, which look like folded helices.  The wall 

has an outer helix, inner helix and a central-filter region. The channel is filled with 

water molecules. (MacKinnon et al,. 1998) 

MD is being used extensively in the field of potassium channels for determining 

the dynamics of the water atoms inside the channel, dynamics of the potassium ion, 

dynamics of the filter and free energy calculations on potassium ions. As there are 

around 6000 protein atoms and 60,000 water atoms in KcsA, parallel MD codes 
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recently developed, like NAMD (Kale et al., 1996), are being used by the research 

community for simulating potassium channels. (Furini et al., 2009) 

As a primary step of optimizing MD, the goal of the research was to decrease 

the cpu-time of simulation of water atoms in KcsA by parallel programming. 

 

 

 Figure 1 Structure of potassium channel 1BL8 
Side and top view 

(MacKinnon et al,. 1998), (Humphrey et al., 1995) 
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CHAPTER 2   Literature Review 
 

 

The number of atoms in the physical system and number of time steps needed 

for simulation make MD computationally intensive. The fluctuations in positions of 

atoms are of the order of angstroms.  Thousands of atoms must be included into 

calculations to simulate even a sub micron scale of physical system.  The size of the 

time step is determined by the frequency of vibration of atoms, which is of the order of 

a femto second (Karplus et al., 2002).  Thousands of time steps are necessary to 

simulate even picoseconds of real time.  Because of these computational demands, 

optimizing MD calculations for clusters of processing units, has gained significance and 

the attention of researchers (Plimpton et al., 1995). 

The force terms involved in MD calculations may either be long range or short 

range forces.  For long range forces, such as columbic interactions, all charged atoms 

interact.  For a system comprising N atoms, directly computing these forces scales with 

N2 and is computationally prohibitive for a large N.  Algorithms like (1) Particle Mesh 

Algorithm (PME) which scales with f(M)N, where M is the number of mesh points and 

f(M) is a function of  M, specific to the physical system (2) Hierarchical Method, which 

scales with Nlog(N), and (3) Fast Multi-Pole Method, which scales with N, have been  

developed to overcome the difficulty in calculating long range forces 

 (Plimpton et al., 1995). 



www.manaraa.com

 

 8

 

 

Short -range interactions are less prohibitive because the ranges of influence of 

inter- atomic forces can be truncated using a cut-off distance, outside of which all 

interactions are ignored.  In such cases, Neighbor List Algorithms are used to maintain a 

list of atoms, within the cut off radius from each atom (Plimpton et al., 1995). Linked 

Cell Method divides the physical system into 3D cells with length greater than cut-off 

radius.  The force terms of atoms belonging to a particular cell are limited to that cell 

and its immediate neighbors only (Plimpton et al., 1995).  Additional time-savings can 

be made by applying Newton’s Third Law by computing force terms only once per each 

pair of interacting atoms. 

Also, given the fact that MD computations are inherently parallel because of 

their explicit nature, there has been considerable effort by the researchers in the last few 

years to exploit this parallelism on various machines to improve the performance of MD 

programs.  A predetermined set of atoms (Atom Decomposition), or a predetermined set 

of force calculations (Force Decomposition), or a single portion of the physical domain 

(Spatial Decomposition), is assigned to each processor. Most MD softwares being 

developed use one or a combination of these three methods of decomposing calculations 

to processors (Plimpton et al., 1995),  (Murty et al., 1998),  (Brown et al., 1997). 

 

Earliest versions of CHARMM, GROMOS, Amber, EGO and Blue Matter 

(developed by IBM), use Atom Decomposition (AD). Other codes, such as 
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DL_POLY_3, NAMD2, GROMACS, MOLDY, latest version of CHARMM, NW 

Chem, PMD, SIGMA, ddgmq, and Euler Gromos, use Spatial Decomposition (SD) 

(Izaguirrre et al., 2004),  (Zhestkov et al., 2008),  (Refson et al., 1999). 

Table 1 illustrates some of the earliest results using AD, Force Decomposition 

(FD), and SD on an Intel cluster with 32 and 64 processors.  
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Table 1 CPU-Seconds/time step for AD, FD and SD methods 
N – Number of atoms, P- Number of processors. (Plimpton et al., 1995) 

 
METHOD N P=32 P=64 

AD 500 0.0111 0.0088 
  2048 0.0446 0.0336 
  4000 0.0807 0.0616 
  6912 0.138 0.103 
  10976 0.22 0.164 
  16384 0.337 0.249 
  32000 0.635 0.474 
  50000 0.993 0.74 
    

FD 500 0.0098 0.00695
  2048 0.0359 0.025 
  4000 0.112 0.0759 
  6912 0.18 0.122 
  10976 0.521 0.349 
  16384 0.828 0.544 
  32000 1.75 1.1 
  50000 NA 6.04 
    

SD 500 0.0129 0.0106 
  2048 0.0321 0.0189 
  6912 0.0768 0.0436 
  16384 0.161 0.0874 
  50000 0.42 0.224 
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AD, FD and SD have been used extensively by many MD codes. NAMD  

(Kale et al., 1996), is one such software that is being used extensively in the research 

field of ion channels. Apart from SD, NAMD has other features, like Object Oriented 

Programming (OOPS), multiple-time step integration, message-driven scheduling of 

processes, full electrostatics-calculation and multiple threads of control. Table 2 has the 

earliest results reported by NAMD with a system containing 4885 atoms simulated for 

20 time steps. 

 

Table 2  Earliest results of NAMD 
 N-Number of atoms, P-Number of processes (Kale et al .1996) 

N P 
Run time sec/20 

steps 
4885 1 118 
4885 2 655 
4885 4 411 
4885 8 241 

 
 

Table 3 shows the earliest results of NAMD, compared with the results of X-

PLOR and CHARMM, for a system containing 32687 atoms simulated for 1000 time 

steps (Kale et al., 1996). 
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Table 3 Comparison of NAMD with X-PLOR and CHARMM 
Run time/1000 time steps in minutes, N-Number of atoms, P-Number of processes. (Kale et al .1996) 

N P NAMD X-PLOR CHARMM
32687 1 304.72 237.45 255.78 
32687 2 163.88 125.38 157.27 
32687 4 92.06 75.45 119.25 
32687 8 50.65 46.38 64.18 

 
 

Although many MD codes recently developed, like NAMD, are using SD, it is 

disadvantageous with physical systems with complex geometries.  Division of such a 

system into uniform cells is a tedious and complicated process. AD however has a 

disadvantage of requiring global communication of data, but has an inherent advantage 

of being simple in load balancing and distribution of force calculations to processes 

(Plimpton et al., 1995).  New efficient algorithms of global communication and faster 

ways of electronically communicating data between processors of a cluster are being 

developed making AD a natural choice for building novel MD simulations  

Table 4 shows a comparison of CPU seconds per communication call, varying 

the data sizes, reported for three different algorithms; (1) long (2) short and (3) hybrid. 

‘Broadcast’ sends data from the root process (rank=0) to the rest of the processes. 

‘Collect’ collects data from all the processes to store the data in an array local to the 

root process.  ‘Global sum to all’ is a combination of ‘Collect’ and ‘Broadcast’, where 

the root collects the data, and the collection is sent to the rest of the processes, such that 

all the processes have a copy of the entire data.  Figure 2 shows the hybrid algorithm for 
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performing a ‘Broadcast’ operation on an array X[x0,x1,x2,x3]. The root has to send X 

to all the other processes invoked by the parallel code. Each of the arrows indicates a 

pair of ‘Send’ and ‘Receive’ operations between a pair of processes. Conventional 

Broadcast sends X to each process, which requires nP operations, where ‘n’ is the 

number of elements in the array and ‘P’, the number of processes invoked. Hybrid 

algorithm shown in Figure 2, sends half of the elements of the array to the next process, 

until n individual elements are distributed evenly to the first n processes, after which, 

the first n nodes send their copies of the elements to the rest of the processes. The 

adjacent processes communicate with a pair of ‘Send’ and ‘Receive’ operations until all 

the processes have a copy of the array X (Bruck et al.. 1997).  
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Table 4 New efficient algorithms for communications (Bruck et al., 1997) 
Comparison of CPU time in seconds taken by each algorithm for reported communication 

Operation Algorithm

Data 
size 

256 B 

Data 
size 

262144 
B 

Data 
size 

1048576 
B 

       
  short 0.00128 0.12401 0.48549 

Bcast long 0.02939 0.05426 0.11965 
  hybrid 0.00139 0.03932 0.09957 
          
  short 0.00338 0.07789 0.29512 

Collect long 0.02672 0.04358 0.08838 
  hybrid 0.00355 0.03074 0.07469 
          

Global short 0.00676 0.15933 0.07469 
sum to all long 0.05547 0.09729 0.60273 

  hybrid 0.00696 0.07251 0.19747 
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Figure 2 Hybrid algorithm for Broadcast 
(Bruck et al., 1997) 
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CHAPTER 3 Research Objectives 
 

Although many algorithms, programs and models for MD simulations have been 

developed, there is still a huge potential for new developments that would address basic 

issues with all MD simulations. Customizing the code depending on the needs of the 

physical system is yet to be achieved in the field of computer simulation.  Source codes 

declared by some of the softwares are filled with programming language intricacies-

difficult to interpret and connect to the actual theory of MD. According to a study of 

parallel applications, published on 10/10/2006 in a newsletter for ‘Electronics, Design, 

Strategy’, the majority of parallel application prototypes (65 percent) are developed in 

very high level languages (VHLLs) such as MATLAB, Mathematica, Python, and R. A 

private organization, Simon Management Group, which offers business management 

solutions, conducted this study (www.simonmanagement.com). 

The availability of computing resources is another major constraint in opting for 

a particular MD program.  Also, debugging public domain and commercial MD 

softwares is a tedious process, as there are no simple debugging options normally 

available to users. The study conducted by Simon Management Group surveyed more 

than 500 users of parallel computing resources, to estimate the span of developing a 

typical parallel application, and revealed that 20% of the respondents’ projects 

consumed two to three years of their time.  
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In this scenario, where efficient but complicated hybrid MD/BD (Brownian 

Dynamics) codes exist; the transparency involved in using a straightforward parallel 

MD code could be the deciding-factor in its choice. As MD is an integral part of the 

more efficient hybrid multi-time-step MD/BD code (Ying et al., 2003), uncoupling the 

classic MD code from the hybrid code and making it fast and compact, gained the 

interest of this research.  

The objective of this research is to develop a simple and efficient parallel MD 

code by cultivating a competent parallel scheme, establish a favorable communication 

system between the parallel processes calculating force terms and optimize the 

communication by reducing the idle time of the processes. The efficiency of the parallel 

MD code in cutting down the cpu-time, will be tested on water inside a potassium 

channel (KcsA). The scalability of the parallel program with 2000-60,000 atoms and 4-

15 processes will be determined. 
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CHAPTER 4 Research Methods 
 

4.1   Protein Data Bank 

 

The structural aspects of the protein wall of KcsA were obtained from PDB file 

1BL8 (Mackinnon et al., 1998). The text file thus obtained had 3D coordinates of atoms 

detected using X-ray Crystallography. The hydrogen atoms, being too small to be 

detected using X-ray crystallography, were missing. An example of the PDB format 

corresponding to the format given in Table 5 is, 

ATOM      1  N   ALA A  23      65.191  22.037  48.576 

Table 5 PDB format 
 

 
S.NO COLUMN FIELD DEFINITION OF THE FIELD 

1 1-6 ATOM Record name ATOM, HETATM 
2 7-11 1 Serial number of the atom 
3 13-16 N Name of the Atom 
4 18-20 ALA Name of the residue 
5 22 A Chain identifier 
6 23-26 23 Sequence number of the residue 
8 31-38 65.191 Position Co ordinate x in Angstroms 
9 39-46 22.037 Position Co ordinate y in Angstroms 

10 47-54 48.576 Position Co ordinate z in Angstroms 
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4.2    Preparation of Input Files 

 

The preparation of the system is shown in Figure 3. The missing hydrogen 

atoms were added to the PDB file wherever necessary using Accelrys Pro software.  

Masses were assigned to individual atoms and the centre of mass of the protein was 

determined. The origin was then shifted to the calculated centre of mass. The relative 

positions of the atoms were calculated and the partial atomic charges were added to the 

text file according to Amber 95 (Cornell et al., 1995). The new file obtained had around 

5200 protein atoms and was named ‘protdata’.  

The Lennard-Jones (LJ) parameters describe the interaction potentials between 

atoms. The parameters were taken from AMBER 95 (Cornell et al., 1995). The input 

text file ‘protdata’ was read and the lj data of each atom was independently recorded 

into another text file. This file was named ‘ljdata’. 

SOLVATE 1.0 was used for introducing water as a solvent into the channel. The 

solute (protdata) was solvated in a cubic water box. Water atoms were placed starting 

from a minimum distance (overlap radius) from each atom. Layer by layer, water atoms 

were added until the specified thickness was met.  The length of the box thus generated 

was 91.808 A0. The total number of water atoms in the box was approximately 60,000. 

The cubic model was chosen to make periodic boundary conditions easier. The 

positions of water atoms were recorded in a text file ‘waterdata’. 
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The 3 files thus prepared, protdata, waterdata and ljdata, were input files to the 

main MD program ‘potch.f’.  

 

 

 

 

Figure 3  Flow chart, Preparation of Simulation System 
 
 
 

PDB: 1BL8 

H atoms added 

Masses, Charges added 

LJ constants added 

MD code: potch.f 

Water atoms added 
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4.3 MD Program potch.f 

 

The structure of the program was divided into four parts,  

1. Variable declaration. The data needed was declared by specifying the type of 

each variable and the length of each array.  

2. Parameter Declaration. The parameters needed for the calculations were 

numerically declared. All the quantities were in SI units. The declared values 

were printed into text files. The list of the variables and their values are given in 

Table 6. 

3. Reading and formatting input files. The input files, protdata, waterdata, ljdata, 

were read and the values were captured into the local variables declared in the 

program. The corrections needed for converting quantities to SI system of units 

were done. The water atoms were coded according to the type of the atom, icode 

= 1 for Oxygen and icode = 2 for Hydrogens. Modified Simple Point Charge 

(SPC) model of water was used. A number was assigned to each water molecule 

for identification, which was stored in the array ‘imol’. The effective peptide 

diameter, peptide volume were calculated. The parameters are reported in Table- 

6. Scaling all the physical quantities avoided dealing with extremely large or 

extremely small values. The parameters were printed into separate files for 

checking. 
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Table 6 List of Simulation-Parameters,  
SI units otherwise stated. 

 
S.NO Parameter Value 

1 Temperature of water 310.15 

2 Mean fluid velocity 0.0 

3 Boltzmann’s constant 1.38048e-23 

4 Molecular mass of water 2.99e-26 

5 Relative H locations to O (5.776e-11, 5.776e-11, 8.163e-11) 

6 O-H Length (water) 0.1e-09 

7 H-H Length (water) 0.16328e-09 

8 Bulk water density (number/m3) 3.337e28 

9 Dielectric constant of water 80.0 

10 LJ constants for water (σ,ε) (nm,KL/mole) (0.340, 0.680) 

11 Cut off potential distance (nm) 0.85 

12 Time step (femto seconds) 0.5 

13 Number of water atoms in box 60000 

14 Number of peptide atoms 5270 

15 Pi 3.1415297 

 
 
 

Actual MD. The details of the potential energy function used in the MD code are 

given in Figure 4. Verlet Leap Grog Algorithm of integration (Appendix B), 

conserving, number of atoms, volume and the temperature of the system, was 

implemented (Ying et al., 2003). Initial velocities of atoms were generated using 

Maxwellian distribution based on the temperature of the system. The random 

number generators used for this purpose were declared as subroutines and were 

defined within the program to make it portable. The generated velocities were 



www.manaraa.com

 

 23

scaled to the temperature of the system. The forces on atoms were initialized to 

zero. The time-step calculations of positions were done in a new loop over time, 

details of which are shown in Figure 5. The positions were updated after each time 

step. The periodic boundary conditions were applied and any atom that escaped the 

box was sent to the next periodic cell in that direction. The positions were printed 

into text files at this stage. The inter-molecular and intra-molecular forces of water 

atoms, the protein-water forces were dealt separately as shown in Figure 6. 

Modified SPC model was used for treating intra-molecular forces of water (Ying et 

al., 2003). Reaction Field theory was used for calculating electrostatic force 

components between atoms. (Ying et al., 2003). The calculated forces on each atom 

were totaled for calculating the combined force of all the other atoms. The three 

components of the force (fx,fy,fz) were calculated independently. The velocities of 

atoms at time step t, were determined from atomic displacements at time t+Δt. To 

keep temperature constant, velocity rescaling was used (Ying et al., 2003). The 

simulation was run for 1000 steps to allow water to equilibrate. 

 

 

Uij =Ubonded +
Aij

rij
12 −

Bij

rij
6 +

qiqj

εriji< j

atoms

∑
i< j

atoms

∑  

 
Figure 4  Details of MD code 
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Figure 5  Flowchart, Loop over time 

Initial positions 
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do iclock=1,imax 
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conditions
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Figure 6 Flowchart, Force calculation 

do i=1,n-1 

do j=i+1,n 

Intra-molecular forces  
Inter-molecular forces 

do k=1,ns 

 
Protein-water forces 

if(imol(i).eq.imol(j)) 
N 

Y    
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4.4     Parallel Schemes for MD 

 

The literature classified parallel schemes being employed currently by most MD 

codes into three categories. All the schemes were described for a system of N atoms and 

P processors. Computation load and communication load on each processor were also 

discussed. 

1. ATOM DECOMPOSITION METHOD (Plimpton et al., 1995) : The force 

calculations on a fixed group  of atoms (N/P), go to fixed processors (P). Each 

processor calculates the total force on each atom in the group (N/P) allotted to it. 

The group of atoms mapped to each processor, remains unchanged with time. 

The computation load on each processor is of the order of O(N/P). The data that 

should be communicated between processors is of the order N, as all the 

processors need the positions of all the atoms for calculating the combined force 

on each atom. However, this reduces the N/N matrix of force elements to 

((N/P)xN)) on each process. This method was used by earlier versions of 

CHARMM, GROMACS and the first version of Bluematter released by IBM 

2. FORCE DECOMPOSITION (Plimpton et al., 1995) : The N2 force elements are 

divided into blocks of size (N/√P)x(N/√P), numbered starting from the first row 

to the last row. These numbers are formed into two strings (x, y) where x 

consists of row-wise generated numbers and y consists of column-wise 

generated numbers. A processor P(K), calculates the forces on elements in the 
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block numbered x(k), caused by the elements in the block numbered y(k). 

Computation load for this method is of the order O((N/P)+(N/√P)). 

Communication load is of the order O(3N/√P) 

3. SPATIAL DECOMPOSITION (Plimpton et al., 1995) : The simulation box is 

physically divided into 3-D shells and each shell is allotted to a processor. 

Atoms move through these shells as time proceeds. The size and shape of each 

shell depend on, N, P and the cut off radius used for interactions. As this method 

takes full advantage of  cut off radius, the data needed for calculation of forces 

on atoms is local to the shell and a small layer of the shells surrounding each 

shell. Thus the communication load is of the order O(6r(N/P)2/3), where r is the 

cut off radius. Computation load is of the order O((N/P)+(6r(N/P)2/3)). The 

disadvantage of this method is complication involved in physically splitting the 

system into equal spaces to balance the load on each processor and 

communication of data between adjacent shells. 
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4.5     Choice of  the Parallel Scheme 

 

Given the limit over the number of nodes available, which was 15, the literature 

suggested that AD, FD, SD would give similar results in cutting down the execution 

time. AD, being simple to incorporate into the existing serial program, was chosen. 

There were two options in incorporating AD for a system of atoms, (1) Master Slave 

Model (MSM), (2) Traditional AD (TAD). In MSM, the root does not share the 

computation load and is responsible only for driving the communication between  the 

rest of the processes to complete computation. Load distribution over processes is 

uneven in this case. TAD makes the root share the computation load thus guaranteeing 

load balance but has double the communication load of the MSM.  

A hybrid algorithm of MSM and TAD was developed for incorporating the good 

features, load-balance and optimal communication. A slight over-load on the root was 

created by making it, share the computation load, and for driving the communication 

between processes. Placing a function after computation and communication leveled the 

slight imbalance thus created, such that all the processes approaching the function, 

would execute the next statement only when each process has called the function.  
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4.6    Preparation of potch.f for Introducing Parallel Scheme 

 

Newton’s Third Law was used in calculating Fji as -Fij in the serial program. 

Considering a square matrix of force components shown in the Figure 7, only the upper 

triangular components are needed. In parallel environment, these components have to 

be inter-communicated such that the lower-triangular elements are derived from the 

upper triangular components. In a parallel code, this calls for a communication of the 

force term Fji between the process responsible for calculations on ‘i’ and the process 

responsible for calculations on atom ‘j’. Such communications were complicated to 

handle in a parallel environment due to imbalances over the number of ‘Send’ and 

‘Recv’ functions that would result on each process. Hence Newton’s Third Law was not 

used in parallel program. Thus, intra-molecular forces for water molecules were most 

effectively calculated in serial mode following which inter-molecular and protein-water 

molecular forces were calculated in parallel. 
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Figure 7  Flowchart, Application of Newton’s Third Law 

 

do iclock=1,n-1 

do j=i+1,n 

 
Fij=Fij+term 
Fji=Fji-term 

do iclock=1,n 

do j=1,n 

 
Fij=Fij+term 

 

SERIAL PARALLEL 
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4.7     Computing Cluster 

 

The parallel MD program was written in Fortran 90 with parallel functions from 

the library mpich-1.2.7. The program was run on ‘Bach’ (bach.vcu.edu), a linux cluster 

with 500 processors, 1 TB RAM and 73 GB of internal memory. The nodes of Bach use 

ethernet to communicate with each other. Every user of Bach was given a username and 

password for logging to the main node. All other nodes had identification numbers 

(node-id) (ex: bach45). All programs were compiled using ‘mpif90’ and linked to the 

parallel environment using ‘mpirun’. After compilation a linux shell script with 

statements for executing the program on the assigned node, was submitted to the 

engine. The script was submitted to the system using the command, ‘qsub’. The 

submission script used is given in the Appendix A. Each submission thus made, called 

‘job’ had a distinct identification number (job-id) on Bach. Once a job was initiated, the 

command ‘qstat’ was used to check the status of the job, which showed job-id, 

submission time, and the node-id. All the jobs were submitted on the head node. The list 

of commands used on Bach is given in Table 7 
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Table 7  List of commands on Bach 
 

 

Function 

 

Command 

Compiling $ usr/global/mpich-1.2.7/bin/mpif90  -c  

filename.f 

Linking $ usr/global/mpich-1.2.7/bin/mpif90 –o filename 

filename.f 

Linking to 

parallel 

library 

This has to be included in the submission script 

submit.sh. (APPENDIX A) 

usr/global/mpich-1.2.7/bin/mpirun –np p  filename 

(p = number of processes) 

Submitting a 

job to cluster 

$ qsub submit.sh 

Checking the 

status of a 

job 

$ qstat –u username  
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4.8      Parallel Programming Library mpich-1.2.7 

 

Before any parallel schemes were employed in the main MD program potch.f, 

the parallel library mpich-1.2.7, and parallel functions were tested using elementary 

programs. The submission script is reported in the Appendix A.  Communication 

between processes was tested using both blocking and non-blocking modes. The list of 

functions tested is shown in Table 8. All the functions are called using a tag, ‘call’  

‘MPI_Init ( )’ and ‘MPI_Finalize ( )’ are first 2 of the 3 important and basic 

functions which appear in all parallel programs. ‘MPI_Init ( )’ marks the beginning of 

parallel environment and has to be called right after the variable declaration. 

‘MPI_Finalize ( )’ marks  the end the parallel code. The arguments common to the three 

basic functions are the communicator ‘MPI_COMM_WORLD’, which is used through 

out the code for communicating data, and an error tag ‘ierr’, which stores a number 

indicating either success or failure of the function. The error tag is a common argument 

to all the parallel functions listed in the Table 8. 

‘MPI_Comm_rank ( )’ has 3 arguments, an integer variable which stores the 

rank of the process  calling it, ‘MPI_COMM_WORLD’ and ‘ierr’.  This has to be called 

after MPI_Init( ).  

‘MPI_Comm_size ( )’, again, has 3 arguments, an integer variable which stores 

the total number of processes initiated by the command ‘mpirun’, the communicator, 

‘MPI_COMM_WORLD’ and the error tag, ‘ierr’.  
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‘MPI_Send ( )’ (Send) is used by a process to send a single element or a string 

of elements to another process. The first argument is the starting address of first element 

of the array, the second argument is an integer which has the number of elements to be 

sent, the third argument is the data type of the elements being sent, the fourth argument 

is the rank of the destination, the fifth argument is a tag which is used to match the 

‘Send’ with the corresponding receiving call made by the destination, sixth argument is 

the communicator ‘MPI_COMM_WORLD’ and the seventh argument is the error tag 

‘ierr’. The communication completes when the destination process receives the data. 

Until the communication is complete, the statement after ‘MPI_Send ( )’ is not 

executed. In other words, ‘MPI_Send ( )’ blocks the program until the receiving process 

calls the corresponding ‘MPI_Recv ( )’. 

MPI_ISend ( ), contrastingly, executes the next statement of the code as soon as 

it is called.  

‘MPI_Recv ( )’ (Recv) receives a single element of the array or a string of 

elements from the process sending the data. The first argument is the starting address of 

the first element of the array, the second argument is an integer which has the number 

of elements to be received, the third argument is the data type of the elements being 

received, the fourth argument is the rank of the sending process, the fifth argument is a 

tag which is used to match the ‘Recv’ with corresponding the ‘Send’ call, the sixth 

argument is an integer which stores the information of the data being received, the 

seventh argument is the  communicator operating between sending and receiving 

processes and the eighth argument is the error tag. 
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‘MPI_Recv ( )’ is a blocking communication and does execute the next 

statement until the communication is complete. ‘MPI_IRecv ( )’ is a non-blocking 

version of the ‘Recv’ call. A blocking ‘Send’ can be paired with a non-blocking ‘Recv’. 

Similarly, a blocking ‘Recv’ can be paired with a non-blocking ‘Send’. Such 

combinations, when improperly used, have a disadvantage of creating a dead lock, 

where a communication cannot be completed. An example of such a dead lock is shown 

in Figure 8 where two calls of ‘Send’ are made with two different tags. The receiving 

process has ‘Recv’ statements in the reverse order of tags. This creates a deadlock 

where intended communications do not happen. 

 

 

 

 

 

 



www.manaraa.com

 

 36

 

 
 

Table 8  List of basic mpich-1.2.7functions 
 

Functions tested Duty 

MPI_Init( ) Initializes MPI environment 

MPI_Comm_rank( ) Stores the ID of the process in the variable declared in its 

argument 

MPI_Comm_size( ) Stores the total number of processes in the variable declared in its 

argument 

MPI_Send( ) Sends the buffer declared, to its destination by specifying the 

communicator. The buffer is cleared after the communication 

ends. 

MPI_Recv( ) Receives the buffer through communicator and stores it in 

variable specified in its argument.  

MPI_ISend( ) Sends the buffer declared, to its destination by specifying the 

communicator. The buffer is cleared instantly. 

MPI_IRecv( ) Receives the buffer through communicator and stores it in 

variable specified in its argument. The code is blocked until the 

communication ends. 

MPI_Bcast( ) Broadcasts the buffer to all the processes. 

MPI_Barrier( ) Blocks the code until all the processes call it. 

MPI_Finalize( ) End of MPI.  
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Figure 8 Deadlock created with blocking Send and Recv calls 

if(myid.eq.0) then 
  dest=1 
   a=2 
   b=3 
   tag=0 
   dtag=1 
   call MPI_Send(a,1,MPI_INTEGER,dest,tag,MPI_COMM_WORLD,ierr) 
   call MPI_Send(b,1,MPI_INTEGER,desr,dtag,MPI_COMM_WORLD,ierr) 
 end if 
if(myid.eq.1)  then  
  tag=0 
  dtag=1 
  call MPI_Recv(b,1,MPI_INTEGER,0,dtag,MPI_COMM_WORLD,stat,ierr) 
  call MPI_Recv(a,1,MPI_INTEGER,0,tag,MPI_COMM_WORLD,stat,ierr) 
  print *,’a=‘,a,’b=‘,b 
end if 
 

0 1

Send a 
- 
- 
- 

Recv b 
- 
- 
- 
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4.9      Designing the Parallel Algorithm 

 

After testing the basic functions of the parallel library mpich-1.2.7, the hybrid 

algorithm of TAD and MSM was designed. The parallel scheme employed is shown in 

the flow Chart of Figure 9. The first three parts of the code were common to all the 

processes. (1) variable declaration (2) fixing the parameters (3) reading and formatting 

inputs. 

As shown in the flowchart in Figure 9, after the do loop on the time step, the 

positions were updated and broadcasted to all the processes by the root process. The 

force calculations on the first P atoms were taken care by the corresponding P 

processes. If ‘i’ was the id of the first atom assigned to the processor Pi, the group of 

atoms assigned to the process Pi was (i, i+P,i+2P,i+3P…). Thus load balance was 

achieved in this scheme. The calculated force components in x, y and z directions, on 

each atom were sent to the root. After the processes calculated forces components, the 

root received the forces, calculated velocities and updated positions. The positions were 

broadcast to all the processes for calculation of forces in the next time step. 
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Figure 9 Flowchart of the algorithm designed

do iclock=1,imax 

All processes: Reset forces 

Root: Broadcasts updated positions to processes 

do i=myid,n,size 

Process 0 
Calculates 

F(4) 
F(8) 

 
 

Process 1 
Calculates 
and sends 

F(1) 
F(5) 
F(9) 

to process 0  

Process 2 
Calculates 
and sends 

F(2) 
F(6) 
F(10) 

to process 0  

Process 3 
Calculates 
and sends 

F(3) 
F(7) 

to process 0  

Root  
do j=1,size-1 
do k=1,chunk 
Receives F(k) 
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4.10  Communications - Test 

 

A model program ‘newcomtest.f’, listed in Appendix B, was developed for 

testing the communication adopted in the algorithm. As a part of the test program, 

positions and forces on atoms were declared as real data types. An initial loop declared 

all the positions of atoms as real numbers. Another loop calculated the force 

components over atoms as half the value of the declared positions. The force 

calculations were done in parallel and were sent to the root. The root received the force 

components and reassigned the values of individual force components to the 

corresponding atom-positions, which were broadcast to all the processes in the next 

time step. The positions of atoms were printed at each time step to check if their values 

halved each time.  

 

 

4.11   Debugging the Test Program 

 

The model program resulted in the p4_error and segmentation problems. It was 

presumed that the communication sandwiched in between computational steps caused 

segmentation errors. Each process calculated the total force on each atom allotted to it 

and communicated the value of the total force on each atom with the root. The root had 

to schedule ‘Recv’ statements according to the order of ‘Send’ calls made by processes, 
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which was fixed by the program in the increasing order of the id’s of the processes. 

With N force terms and corresponding N ‘Send’ calls made by the processes, 

scheduling the calls made by processes created congestion.  

The algorithm was improved to reduce the number of ‘Send’ and ‘Recv’ 

statements keeping the total size of the data constant. This was achieved by gathering 

all the force components calculated by a process into 3 arrays, each for x,y,z 

components, with their corresponding atom id’s into another array. After all the 

calculations on the set of allotted atoms were done, each process would send the arrays 

to the root. The root would receive arrays from each process, in the order of their ranks 

(id’s) and retrieved force components based on the atom id’s from the received arrays. 

This would reduce the number of ‘Send’ and ‘Recv’ calls from ‘6N’ (N=number of 

atoms) to ‘6*(P-1)’ (P=number of processes), keeping the size of the data constant.  

Upon testing, the new model continued to give segmentation errors. 

 

Table 9 List of errors in test progam. 
 

ERROR                                 Interpretation 

P4_error SIGEGV: Could not send to fd=5 Segmentation error: One of the processes 

died early, leaving the communication un 

successful (Algorithm should be reviewed) 

P4_error SIGEGV: Could not write to fd=5 Segmentation error: One of the processes 

dies early, leaving the communication un 

successful (Algorithm should be reviewed) 
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It was supposed that bringing entire communication together could resolve the 

segmentation problem. The ‘Broadcast’ calls, which were originally scheduled before 

force calculations started, were shifted and placed after the ‘Recv’ calls from the root. 

The communication then functioned as a packet of ‘Send’ and ‘Recv’ calls, which sent, 

received and broadcast values after each process completed its calculations. Upon 

testing, the model ‘newcomtest.f’ functioned as anticipated. 

 

 

4.12      Parallel MD Program, parmd.f 

 

Following the developed algorithm and model, parallel MD program parmd.f 

was developed.  

The first three parts of the code, (1) variable declarations (2) fixing the 

parameters (3) reading and formatting inputs, were kept common to all the processes. 

The force calculations on the first P atoms were taken care by the corresponding P 

processes.  Pi calculated forces on, (i, i+P,i+2P,i+3P…) atoms. The calculated 

combined force component on each atom was stored in an array, local to each process. 

The ID’s of the atoms were stored in another array in the order (i, i+P,i+2P,i+3P…). 

Thus each process had four arrays, tempfx, tempfy, tempfz, temp, three for the force 

components and one for the atom ID’s. These were sent to the root after each process 

completed the calculations on the assigned N/P atoms.  
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 The root received the arrays in the order of the ranks of the processes and stored 

them into a consorted array, which had total force components on each atom. The root, 

from the forces received, calculated velocities and positions from the retrieved force 

components. The root broadcast updated positions to all the processes. This step ended 

the communication packet and the loop over time. As a fresh time-step started, force 

calculations resumed using updated positions. 

MPI_Barrier ( ) calls were used before and after the loop, which calculated the 

forces to guarantee that all the processes finish their calculations before communication 

start and all processes start fresh calculation of force components only after receiving 

the updated positions from the root. 

 

 

4.13      Debugging the Parallel MD program, parmd.f. 

 

The parallel program had occasional reports of segmentation problems. 

Introducing message driven communication optimized the scheduling of ‘Send’ calls. 

MPI_Any_Source ( ), was used in the ‘Recv’ calls made by the root. This would 

allow a ‘Recv’ statement to communicate with any process, without the condition 

imposed on it earlier to receive data from processes in the order of their ranks. This is 

shown in Figure 11.  In other words, the order of processes calling ‘Recv’, which was 

fixed to be in the order of their ranks, was changed such that the process finishing 
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calculations first would call the ‘Recv’ first, making it the FIFO (first in first out) form 

of the queue system. The rank of the process was then stored in a variable, which was 

used in the following ‘Recv’ statements such that all the ‘Recv’ statements were called 

by a single process at a time. 

 The overlap distance employed was increased to 0.3 angstroms. Any smaller 

quantities were corrected to 0.3. All the variables were declared to avoid errors 

occurring from data type of the variable. ‘Implicit none’ statement was used to assure 

there are no quantities left undeclared. 

After the listed changes were made, the program functioned as anticipated. The 

results obtained were compared with serial program and were found to be the same. The 

final flowcharts of calculations inside loop over time and force calculations for a system 

of 10 atoms and 4 processes are presented in Figure 10 (a) and (b). 
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(a) 

Initial positions 
Velocities 

do iclock=1,imax 

Update positions 

Procs: Calculate forces in parallel 

Procs: Send force arrays to root 

 
ALL Procs: Reset & Calculate forces

 
Root: Receive P force arrays

 
Calculate & Scale velocities

OUTPUT 
positions 
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(b) 

Figure 10 
(a) and (b) :Calculations inside time-loop of parmd.f 

All processes: Fx=0.0 Fy=0.0 Fz=0.0 

do i=myid,10,size 

Process 0 
Calculates 

F(4) 
F(8) 

 
temp(1)=4 
temp(2)=8 

 
tempF(1)=F(4) 
tempF(2)=F(8) 

 

Process 1 
Calculates 

F(1) 
F(5) 
F(9) 

temp(1)=1 
temp(2)=5 
temp(3)=9 

tempF(1)=F(1) 
tempF(2)=F(5) 
tempF(3)=F(9) 

Send 
temp 

tempF to 0 

Process 2 
Calculates 

F(2) 
F(6) 
F(10) 

temp(1)=2 
temp(2)=6 
temp(3)=10 

tempF(1)=F(2) 
tempF(2)=F(6) 

tempF(3)=F(10) 
Send 
temp 

tempF to 0 

Process 1 
Calculates 

F(3) 
F(7) 

 
temp(1)=3 
temp(2)=7 

 
tempF(1)=F(3) 
tempF(2)=F(7) 

 
Send 
temp 

tempF to 0 

Root : do j=1,size-1 
Receive temp, tempF 

do k=1,chunk 
id=temp(k) 
F(id)=F(k) 
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c BARRIER for all processes to complete calculations 
       call MPI_BARRIER(MPI_COMM_WORLD,ierr) 
       print*,'BEFORE WAIT*****I AM******',myid  
 
c*************************************************** 
c if process is not head, send calculated forces to head       
c      
          if(myid.ne.0) then 
           call MPI_SEND(temp(1),sz,MPI_INTEGER,0,0, 
     &      MPI_COMM_WORLD,ierr) 
           call MPI_SEND(tempfx(1),sz,MPI_REAL,0,1, 
     &      MPI_COMM_WORLD,ierr) 
           call MPI_SEND(tempfy(1),sz,MPI_REAL,0,2, 
     &      MPI_COMM_WORLD,ierr) 
           call MPI_SEND(tempfz(1),sz,MPI_REAL,0,3, 
     &      MPI_COMM_WORLD,ierr) 
           endif 
c******************************************************** 
    
c********************************************************** 
c head stores collected forces into their proper places f 
c head computes velocities 
c 
c Head revceives the calculated forces 
           if(myid.eq.0) then 
           k=1 
           counter=1 
           do 523 j=1,size-1 
           call MPI_RECV(temp1(1),sz,MPI_INTEGER,MPI_ANY_SOURCE, 
     &      0,MPI_COMM_WORLD,stats,ierr) 
           iam=stats(MPI_SOURCE) 
           call MPI_RECV(tx(1),sz,MPI_REAL,iam,1, 
     &      MPI_COMM_WORLD,stats,ierr) 
           call MPI_RECV(ty(1),sz,MPI_REAL,iam,2, 
     &      MPI_COMM_WORLD,stats,ierr) 
           call MPI_RECV(tz(1),sz,MPI_REAL,iam,3, 
     &      MPI_COMM_WORLD,stats,ierr) 
            do 524 i=1,sz 
           temp3=temp1(i) 
           if(temp3.ne.0) then 
           fx(temp3) = tx(i) 
           fy(temp3) = ty(i) 
           fz(temp3) = tz(i) 
           write(21,501)iclock,temp3,icode(temp3),fx(temp3) 
 501       format(i4,1x,i8,1x,i6,1x,10f10.2)         
          counter=counter+1 
           endif 
 524       continue 
 523       continue 

 
Figure 11 Reception and retrieval of forces with message driven scheduling of processes 
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Figure 12 Flowchart, input files, execution and output files. 
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CHAPTER 5 Results and Discussions 
 

5.1     Performance of the Parallel Program after Debugging. 

 

The results from parallel program were consistent after debugging. The graph 

shown in Figure 13 was generated in a microsoft excel sheet using the data from 

cpu_time per time-step, for 10 time-steps, on the system comprising 20000 water atoms. 

The parallel program ran on 4 processors. The ideally parallel curve was generated by 

dividing each data point of the cpu_times recorded by the serial program by the number 

of processes declared for the parallel program. The lag observed between the curve 

generated by the parallel program and the ideal parallel curve was a result of the time 

elapsed in communication of data between processes.  
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Performance of parallel program
 Case: n=20000, imax=10
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Figure 13 Graph showing comparison of potch.f and parmd.f 
 

 

5.2      Scaling with Number of Atoms 

 

The scaling of the parallel program with number of atoms, in terms of cpu_time 

per time step was determined for 2000-60000 atoms. However, the complete simulation 

of KcsA is only relevant for the case of 60,000 water atoms. The graph shown in Figure 

14, representing the scaling of parallel and serial programs with number of atoms was 

generated in a microsoft excel sheet using means of cpu_time per time-step for 10 time 

steps on 4 processors for the parallel program. As the number of atoms increased 

beyond 20,000, there was almost four-fold reduction in the time taken by the parallel 
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program when compared to the serial program. This was important because most of the 

biological systems had more than 20,000 atoms and needed 100,000 – 100,00,000 time 

for complete study of their dynamics. The ideal parallel curve was generated by 

dividing the cpu_times recorded by the serial program by number of processes declared 

for the parallel program. For the typical case of potassium channel being considered, a 

complete simulation, with 60,000 water atoms, a 40,000 time step simulation would run 

for almost 84 days with the serial program and 22 days with the parallel program 

developed. 
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Figure 14  Graph showing scaling of parmd.f with number of atoms 
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5.3   Scaling with Number of Processes 

 

As the number of processes assigned to a parallel program increase, the 

execution time of the program decreases down to a point after which the advantage of 

parallel computing balance out the communication time between processes. For this 

reason, different parallel algorithms designed for the same physical system, differ in 

scaling with number of processes, depending on the way communication calls are made. 

A variety of parallel MD codes, each of which are effective in a particular range of 

processes, have been invented.  

The scaling of parallel program with number of processes was tested on a 

system with 20,000 water atoms for 10 time-steps. Each data point in the graph shown 

in Figure 15 represents the mean of the cpu_time per time-step recorded by the program 

for a number of processes. The tipping point of the curve, beyond which, the 

communication between processes takes over the advantage of parallel computation of 

forces, could not be established as the users of Bach were allowed to use a maximum of 

15 processes. It was observed that the program scaled well for all the tested cases. 
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Scaling w ith number of processes
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Figure 15 Graph showing the scaling of parmd.f with number of processes 
 

 

Subtracting the calculated ideal cpu_time from the recorded mean cpu_times by 

the parallel program parmd.f, generated the graph shown in Figure 16. For a system of 

20,000 atoms, Figure 16 shows the best choice of number of processes, which was 

observed as 15. 
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Figure 16 Graph showing the scaling of parmd.f with number of processes 
 

 

 

5.4   Load Balance over Processes. 

 

As each process calculated the total force executed by the system on the chunk 

of atoms allotted, computation-wise, equal load was imposed on all of the processes. 

This was tested on a system with 20,000 atoms and 15 processes. Figure 17 shows the 

distribution of number of atoms over the processes. It can be noticed that processes 

shared the computation on atoms equally, with an extra atom being assigned to 

processes 1,2 and 3. Figure 18 shows the cpu_time per time step, recorded by each 

process of the parallel program. Instead of printing the cpu_time to a file, ‘print to 



www.manaraa.com

 

 55

screen’ option was used to record the cpu_time. It can be noticed that the cpu_times 

recorded by the processes are evenly distributed around 5 seconds/time step. 
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Figure 17 Graph showing the load balance on processes with parmd.f 
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 18 Graph showing load balance on processes with parmd.f 

cpu_time/time step distrobution over processes

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process ID

CPU time of 
processes 



www.manaraa.com

 

 56

  

5.5   Application of Newton’s Third Law 

 

Applying Newton’s Third Law (NTL) in calculating force terms on atoms 

halved the computation costs but increased the communication costs by a factor of 

number of atoms involved. To optimize communication costs, application of NTL was 

skipped in the parallel program. The impact of this choice was tested in 2 cases. (1) A 

system with 4 processes by varying the number of atoms. (2) A system of 20,000 atoms 

by varying the number of atoms. It was observed that application of NTL was 

advantageous for smaller systems with less than 8000 atoms, for which, parallel and 

serial programs, gave similar results.  For larger systems with number of atoms greater 

than 20,000 and with number of processes greater than 4, parallel program gave better 

results. Figure 19 shows the scaling of parallel program with 4 processes, serial 

program without NTL and serial program using NTL, with number atoms. It can be 

clearly observed that up to 20,000 atoms, and 4 processes, curves representing parallel 

and serial program using NTL almost overlap. Figure 20 was generated by subtracting 

the mean of cpu_time recorded by the serial program using NTL from the means of 

cpu_time recorded by the parallel program and serial program without NTL, for a 

system with 20,000 water atoms with different number of processes. The graph clearly 

shows the advantage of using parallel program with number of processes greater than 4. 
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Figure 19 Scaling potch.f, parmd.f and newton.f with number of atoms 
 

Comparison with Serial program using Newton's Law.
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Figure 20 Differential scaling of potch.f, parmd.f with respect to newton.f  
with number of processes 
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5.6 Simulation of KcsA 

 

The prepared system of KcsA with 60,000 water atoms and 5200 protein atoms 

was simulated for 1000 time steps using 8 processes. Positions of the first 100 water 

atoms were printed out each time step. The positions of water atoms before simulation, 

after 200 steps and after 500 steps are shown in Figure 22. The total time for simulation 

was 4999.135 seconds. Figure 21 shows the graph of CPU_time in seconds per 

time/step. A sharp peak was observed at 635, 637 steps that took around 20 seconds 

(CPU_time) to complete. 
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Figure 21  CPU-time/step versus time step for simulation of KcsA 
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Figure 22  Simulation of  KcsA, 100 atoms, after 200, 500 steps. 
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5.7  Portability 

 

Although the program was developed on a Linux cluster, the code can be used 

on other platforms, which have either a Fortran 77 or 90 compiler and mpich-1.2.7 

library. The path of the mpi.h in the ‘include’ statement, ‘include ‘usr/global/mpich-

1.2.7/include/mpif.h’, should be correctly given when using the code on another cluster. 

Other versions of MPI such as open mpi might require changes in the syntax of MPI 

functions.  

 

 

5.8  Interaction with VMD 

 

Output files generated using the parallel program can be saved as text files and 

opened as excel sheets to change the format to PDB format. Microsoft excel sheets can 

be reopened as text files in the changed format, which in turn can be opened in VMD 

editor for viewing the structure of the system. 
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CHAPTER 6 Future work 
 

A parallel molecular dynamics program was developed for simulation of water 

atoms inside potassium channel KcsA. The program has verlet integration scheme of 

MD, SPC (simple point charge) model of treatment of water, reaction field theory for 

calculation of long range electrostatic forces, scaling of velocities based on system 

temperature, a hybrid AD algorithm for parallel force computations on water atoms and 

message driven communication between processes.  

 

The program can be taken to its next level by adopting the following points, 

• The intra-molecular force calculations on proteins have to be introduced into the 

code for introducing flexibility of protein atoms. Flexibility of proteins is 

particularly important for simulating the gating mechanism of KcsA. An 

additional loop for calculating the intra-molecular force components on protein 

atoms, can be included within the loop for calculating force terms on water 

atoms 

• Newton’s law could be applied to the force calculations in parallel program to 

observe the changes in communication it would cause. This is particularly 

important for larger physical systems (greater than 60,000), after which 

computations increase exponentially. 
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• Applets for thermodynamic free energy calculations and data analysis of the 

updated positions and forces like RMSD plots and Raman plots can be 

introduced.  

• Object oriented programming with C++, would be another interesting change 

that could be made that might improve the speed of the existing parallel 

program. The positions, velocities, total force and other properties of a particular 

atom can be declared as a class. This would significantly decrease the number of 

communication calls in the parallel MD program. 

• The code can be converted to GUI (graphical user interface) software, which 

would take the simulation parameters and PDB file as input and generate 

pictorial out put of the dynamics of the system. 
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APPENDIX A 
 

Submission script.sh 

 

#!/bin/bash 
######################################################################
###### 
#  execute script in current directory 
#$ -cwd 
#  want any .e/.o stuff to show up here too 
#$ -e ./ 
#$ -o ./ 
#  shell for qsub to use: 
#$ -S /bin/bash 
#  name for the job; used by qstat 
#$ -N laxmi_test 
# number of processes is given ni the next line 
#$ -pe mpich 8 
#$ -V 
######################################################################
###### 
 
WD="/usr/global/mpich-1.2.7" 
export MPIRUN="/usr/global/mpich-1.2.7/bin/mpirun" 
#export ssh=rsh 
echo "MPIRUN == $MPIRUN..." 
echo "----------------------------------------------------------------
--" 
echo "sub_test.sh:  My user name is `whoami`..." 
echo "sub_test.sh:  I'm on `hostname`.............." 
echo "current directory is `pwd`..." 
echo "sub_test.sh:  Beginning @ `date`..." 
echo "sub_test.sh:  TMPDIR == $TMPDIR..." 
echo "P4_RSHCOMMAND == $P4_RSHCOMMAND..." 
 
if [ -e $TMPDIR/machines ]; then 
 echo "It's alive...  ALIVE!!!!" 
 echo "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm" 
 cat $TMPDIR/machines 
 echo "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm" 
 echo "cp-ing machines file to ./" 
 cp $TMPDIR/machines . 
 echo "./machines == " 
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 cat ./machines 
 echo "............." 
else 
 echo "OHNOZE..." 
fi 
 
echo "Running job with $WD/bin/mpirun:" 
echo "Doing:" 
echo "    $WD/bin/mpirun \\" 
echo "        -np $NSLOTS \\" 
echo "        -machinefile ./machines \\" 
echo "        /home/mullapudil/RECENT/dorodie/temp3" 
 
# the command mpirun to run the file temp4 in parallel mode 
# WD : path of the command 
# $NSLOTS (number of processes is taken from pe mpich 8 
 
$WD/bin/mpirun \ 
 -np $NSLOTS \ 
 -machinefile ./machines \ 
 /home/mullapudil/RECENT/doordie/temp4 
 
echo "sub_test.sh:  Ending @ `date`..." 
echo "----------------------------------------------------------------
--" 
######################################################################
###### 
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APPENDIX B 
 

Communication test newcomtest.f 

         program communication 
c to test the communication of the main MD program 
c Forces are calculated in parallel, 
c particle positions are clculated along with forces 
c individual processes send atom ID's  
c root receives them 
         integer k,ierr, myid, size,sz,temp3,j,iam 
         integer stats(MPI_STATUS_SIZE),m,imax,req(5),i 
         real temp2 
         real  tempx(100000),tempy(100000) 
         real tempz(100000) 
         integer temps(100000),temp1(100000),counter 
         real temp1x(100000), temp1y(100000),temp1z(10000) 
         real x(100000),y(100000),z(100000) 
         real fx(100000),fy(100000),fz(100000) 
         include '/usr/global/mpich-1.2.7/include/mpif.h' 
c------------------------------------------------------- 
c mpi functions, init,rank,size are declared 
c------------------------------------------------------- 
         call mpi_init(ierr) 
         call mpi_comm_rank(MPI_COMM_WORLD,myid,ierr) 
         call mpi_comm_size(MPI_COMM_WORLD,size,ierr) 
         print*,'I am in parallel world' 
c------------------------------------------------------- 
c parameters m=no 0f particles,x,y,z,co ordinates of particles 
c temps carries ID of particles, tempxyz,txyz carry temporary  
c co ordinates,k is a counter used 
c------------------------------------------------------- 
           m=2000 
           sz=m 
           temps=0.0 
           tempx=0.0 
           tempy=0.0 
           tempz=0.0 
           temp1=0.0 
           temp1x=0.0 
           temp1y=0.0 
           temp1z=0.0  
         do 100 i=1,m 
           x(i)=120.0 
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           y(i)=120.0 
           z(i)=120.0 
 100     continue 
c 
c 
          do 1 iclock=1,20 
           counter=1 
c parallel  
           do 2  k=myid,m,size 
           x(k)=x(k)/2.0 
           y(k)=y(k)/2.0 
           z(k)=z(k)/2.0 
           temps(counter) = k 
           tempx(counter) = x(k) 
           tempy(counter) = y(k) 
           tempz(counter) = z(k) 
           counter=counter+1 
           write(7,99)iclock,k,x(k),y(k),z(k) 
 99        format(i5,1x,i5,1x,5f8.3,1x,5f8.3,1x,5f8.3) 
 2         continue 
c------------------------------------------------------ 
c all processes send temps to the root 
c------------------------------------------------------ 
           call MPI_BARRIER(MPI_COMM_WORLD,ierr) 
           if(myid.ne.0) then 
           call MPI_SEND(temps(1),m,MPI_INTEGER,0,0, 
     &      MPI_COMM_WORLD,ierr) 
           call MPI_SEND(tempx(1),m,MPI_REAL,0,1, 
     &      MPI_COMM_WORLD,ierr) 
           call MPI_SEND(tempy(1),m,MPI_REAL,0,2, 
     &      MPI_COMM_WORLD,ierr) 
           call MPI_SEND(tempz(1),m,MPI_REAL,0,3, 
     &      MPI_COMM_WORLD,ierr) 
           end if 
c------------------------------------------------------ 
c root receives temps from processes and stores it in temp1 
c-------------------------------------------------------- 
           if(myid.eq.0) then 
           k=1 
           do 3 j=1,size-1 
           call MPI_RECV(temp1(k),sz,MPI_INTEGER,MPI_ANY_SOURCE,0, 
     &      MPI_COMM_WORLD,stats,ierr) 
           iam=stats(MPI_SOURCE) 
           call MPI_RECV(temp1x(k),sz,MPI_REAL,iam,1, 
     &      MPI_COMM_WORLD,stats,ierr) 
           call MPI_RECV(temp1y(k),sz,MPI_REAL,iam,2, 
     &      MPI_COMM_WORLD,stats,ierr) 
           call MPI_RECV(temp1z(k),sz,MPI_REAL,iam,3, 
     &      MPI_COMM_WORLD,stats,ierr) 
           do 4 i=k,k+sz 
           temp3=temp1(i) 
           if(temp3.ne.0) then 
           x(temp3)=temp1x(i) 
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           y(temp3)=temp1y(i) 
           z(temp3)=temp1z(i) 
           write(8,99)iclock,temp1(i),temp1x(i),temp1y(i),temp1z(i) 
           end if 
 4         continue 
            k=k+sz 
 3         continue 
          end if    
          call MPI_Barrier(MPI_COMM_WORLD,ierr)  
c broadcast positions 
          call MPI_Bcast(x,m,MPI_REAL,0,MPI_COMM_WORLD,ierr) 
          call MPI_Bcast(y,m,MPI_REAL,0,MPI_COMM_WORLD,ierr) 
          call MPI_Bcast(z,m,MPI_REAL,0,MPI_COMM_WORLD,ierr) 
 1         continue 
          call mpi_finalize(ierr) 
          print*,'OUT OF PARALLEL WORLD WITH',ierr,'ERROR' 
          stop 
          end 
c 
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