
www.manaraa.com

Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2009

A PARALLEL MOLECULAR DYNAMICS PROGRAM FOR A PARALLEL MOLECULAR DYNAMICS PROGRAM FOR

SIMULATION OF WATER IN ION CHANNELS SIMULATION OF WATER IN ION CHANNELS

Laxmi Mullapudi
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Chemical Engineering Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/1789

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1789&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=scholarscompass.vcu.edu%2Fetd%2F1789&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/1789?utm_source=scholarscompass.vcu.edu%2Fetd%2F1789&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

www.manaraa.com

School of Engineering
Virginia Commonwealth University

This is to certify that the thesis prepared by Laxmi Mullapudi entitled A PARALLEL
MOLECULAR DYNAMICS PROGRAM FOR SIMULATION OF WATER IN ION
CHANNELS has been approved by her committee as satisfactory completion of the

thesis requirement for the degree of
Master of Science, Chemical and Life Science Engineering

Michael H. Peters, Ph.D, School of Engineering

Stephen S. Fong, Ph.D, School of Engineering

Vamsi K. Yadavalli, Ph.D, School of Engineering

Laura A. McLay, Ph.D, School of Humanities and Sciences

Frank Gupton, Ph.D, Chair of Chemical and Life Science Engineering, School of Engineering

Rosalyn Hobson, Ph.D, Associate Dean for Graduate Studies, School of Engineering

Russell D. Jamison, Ph.D, Dean, School of Engineering

F. Douglas Boudinot, Ph.D, Dean of the Graduate School

05/08/2009

www.manaraa.com

LAXMI MULLAPUDI 2009

All Rights Reserved

www.manaraa.com

A PARALLEL MOLECULAR DYNAMICS PROGRAM FOR SIMULATION OF

WATER ATOMS IN ION CHANNELS

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science, Chemical and Life Science Engineering

at Virginia Commonwealth University.

by

LAXMI ANASUYA MULLAPUDI
B Tech Chemical Engineering, University College of Technology,

Osmania University India, 2006

Thesis Advisor: DR. MICHAEL H. PETERS
PROFESSOR, CHEMICAL AND LIFE SCIENCE ENGINEERING

Virginia Commonwealth University
Richmond, Virginia

May 2009

www.manaraa.com

 ii

Acknowledgement

I thank my advisor, DR Michael H. Peters, for, giving me this opportunity to

work on a topic in the area of my interest and inspiring me with his insightful

suggestions for carrying out the research successfully. I sincerely appreciate the

technical help provided by Mr. John G. Laynne in debugging the parallel code.

I thank the staff and the faculty of the School of Engineering for cooperating

with me during my research. I thank the Virginia Commonwealth University for

providing me the facilities and financial assistance for my research work.

I thank my parents for raising me in an atmosphere that was conducive to enjoy

the sheer experience of learning. I thank my loving husband for consistently supporting

me in pursuing my interest.

I finally thank the people and the government of the United States of America for

their gracious encouragement, accorded to a student from overseas, to pursue the dream

of higher education.

www.manaraa.com

 iii

Table of Contents
 Page

Acknowledgements... ii

List of Tables ...v

List of Figures ..vi

Chapters

 1 Introduction and Background Information ...1

1.1 Theory of Molecular Dynamics (MD) ..1

1.2 MPI-Message Passing Interface ..4

1.3 Physical System for MD - Potassium Channel5

2 Literature Review ..7

3 Research Objective ..16

4 Research Methods..18

4.1 Protein Data Bank ...18

4.2 Preparation of Input Files..19

4.3 MD Program potch.f ...24

4.4 Parallel Schemes for MD ..26

4.5 Choice of the Parallel Scheme ..28

4.6 Preparation of potch.f for Introducing Parallel Schemes29

4.7 Computing Cluster-Bach...31

4.8 Parallel Programming Library mpich-1.2.7 ..33

www.manaraa.com

 iv

4.9 Designing the Parallel Algorithm..38

4.10 Communication -Test..40

4.11 Debugging the Test Program ..42

4.12 Parallel MD Program parmd.f...42

4.13 Debugging parmd.f ...43

5 Results and Discussion ..49

5.1 Comparison of Parallel and Serial Programs ..49

5.2 Scaling with Number of Atoms...50

5.3 Scaling with Number of Processes..52

5.4 Load Balance on Processes ...54

5.5 Application of Newton’s Third Law ...56

5.6 Portability ..60

5.7 Interaction with VMD ...60

6 Future Work...61

References..63

Appendices ..67

A Submission Script ..67

B Communication Test Code ..69

www.manaraa.com

 v

List of Tables
Page

Table 1: CPU-seconds/time step for AD, FD and SD methods...10

Table 2: Earliest results of NAMD..11

Table 3: Comparison of NAMD with X-PLOR and CHARMM.12

Table 4: New efficient algorithms for communication..14

Table 5: PDB format..18

Table 6: List of simulation parameters. ...22

Table 7: List of commands on bach...32

Table 8: List of basic mpich-1.2.7 functions. ..37

Table 9: List of errors in test program. ..41

www.manaraa.com

 vi

List of Figures
Page

Figure 1: Structure of potassium channel ..6

Figure 2: Hybrid algorithm for ‘broadcast’ ...15

Figure 3: Flowchart, preparation of simulation system...20

Figure 4: Details of MD code ..23

Figure 5: Flowchart, loop over time ..24

Figure 6: Flowchart, force calculation...25

Figure 7: Flowchart, application of Newton’s Third Law...30

Figure 8: Deadlock created with blocking ‘send’ and ‘recv’ calls37

Figure 9: Flowchart of the algorithm designed..39

Figure 10: Flowcharts of calculations inside loop over time and force calculations.........46

Figure 11: Reception and retrieval of forces with message driven communication..........47

Figure 12: Flowchart, input files, execution and output files ..48

Figure 13: Graph showing comparison of potch.f and parmd.f...50

Figure 14: Graph showing the scaling of parmd.f with number of atoms.........................51

Figure 15: Graph showing the scaling of parmd.f with number of processes53

Figure 16: Graph showing the scaling of parmd.f with number of processes54

Figure 17: Graph showing the load balance on processes with parmd.f55

Figure 18: Graph showing the load balance on processes with parmd.f55

Figure 19: Graph comparing potch.f, parmd.f, and newton.f ..57

www.manaraa.com

 vii

Figure 20: Graph comparing potch.f, parmd.f, and newton.f ..57

Figure 21: Simulation of KcsA...59

Figure 22: CPU-time/step versus time step for simulation of KcsA63

www.manaraa.com

 viii

Abstract

A PARALLEL MOLECULAR DYNAMICS PROGRAM FOR SIMULATION OF

WATER ATOMS IN ION CHANNELS.

By Laxmi Mullapudi, B Tech, Chemical Engineering

A Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science, Chemical and Life Science Engineering

at Virginia Commonwealth University.

Virginia Commonwealth University, 2009

Thesis Advisor: Dr. Michael H. Peters
Professor, Chemical and Life Science Engineering

With a modest beginning from developing a model of dynamics of hard liquid

spheres (Alder et al., 1957), molecular dynamics (MD) simulations have come to a point

where complex biomolecules can be simulated with precision close to reality

(Noskov et al., 2007). In this context, a parallel molecular dynamics program for

simulation of ion channels associated with cellular membranes has been developed. The

parallel MD code developed is simple, efficient, and easily coupled to other codes such

as the hybrid molecular dynamics/ brownian dynamics (MD/BD) code developed for the

study of protein interactions (Ying et al., 2005).

www.manaraa.com

 ix

The Atom Decomposition (AD) Method was used in partitioning calculations on

atoms to processors. One of the major impediments in using AD was the relatively large

size of data that had to be communicated by the processes (Plimpton et al., 1995).

Replicating only positions of atoms eased the congestion created by communication of

both force terms and positions of atoms between processes. The performance of the code

was tested on KcsA, a bacterial potassium channel. The program was written in Fortran

90 with parallel functions from the library of mpich-1.2.7. The idle time of processes

was optimized by message driven ordering of communication.

The scaling of the parallel program with 2000 – 60,000 atoms was determined

and compared with the results obtained from the serial program. As expected, the

parallel program scaled better than the serial program as the number of atoms included

in the simulation increased from 2000 - 60000. The performance of the parallel program

was tested on 4-15 processes, for a system comprising 20,000 atoms. The results

obtained were compared with results from the serial program. It was observed that the

parallel program scaled better than the serial program as the number of processes

increased from 4 to 15. When compared with serial program, which had application of

Newton’s Third Law in calculating force terms once per each pair of atoms, it was

observed that the parallel program scaled better on 6-15 processes for a physical system

comprising of 20,000 atoms.

www.manaraa.com

 x

www.manaraa.com

 1

CHAPTER 1 Introduction and Background Information

1.1 Theory of Molecular Dynamics

The dynamics of biological (bio) molecules range from local atomic fluctuations

of the order, 0.01 angstroms/femto (10-15) second, to molecular-scale motions of the

order, 5 angstroms/micro (10-3) second (Karplus et al., 2002). Although macroscopic

properties can be calculated using experimental methods, computer simulations provide

details of conformational, structural and thermodynamic changes of biomolecules and

simultaneously track the atomic fluctuations. On the basis of the structure determined

by X-ray crystallography and Nuclear Magnetic Resonance (NMR) studies, and with

the advent of parallel programming on large-scale computing systems with hundreds of

CPU’s, Molecular dynamics (MD) method is being used extensively to discover time-

dependent behavior of biomolecules.

MD method can be used to calculate the properties of a defined molecular

system from equations of motion describing the displacements of individual atoms. The

equations of motion are approximated by finite difference schemes and are solved

numerically yielding changes in positions and velocities of atoms at each time step. A

typical MD simulation is considered in three steps; (1) initialization (2) equilibration,

and (3) production. (Karplus et al., 2002)

www.manaraa.com

 2

1) Initialization. The first step is specification of initial conditions at time zero.

This is done by, assuming the initial atomic positions on a lattice and the

velocities drawn from a Maxwellian distribution based on the system-

temperature.

2) Equilibration. The next step is to allow the system to move to its equilibrium

state.

3) Production. The third step is the actual calculation of the properties of the

system along its trajectory in space field.

In canonical ensemble, the simulation can be conducted under constant

temperature (T), constant number of particles (N) and constant volume (V) case. For a

classical, Newtonian system, equation of motion can be written as,

∑
<

=−=
ji

iji
i

ii
i rF

dr
dv

dt
trdm)()(

2

2

-----------(1a)

Where, ‘mi’, ‘ri’, ‘vi’, are the mass, position and velocity of particle ‘i’ at time

‘t’, ‘Fi’, the total force exerted by the system on the particle ‘i’, and ‘rij’, the distance

between particles, ‘i’ and ’j’. Applying Finite Difference Scheme to equation (1a) gives

the set of equations (1b).

www.manaraa.com

 3

v
n+1

2

= vn +
Δt
2m

Fn

rn+1 = rn + Δtv
n+1

2

Fn+1 = f (rn+1)

vn+1 = v
n+1

2

+
Δt
2m

Fn+1

--------------(1b)

Where, for a particle ‘i’, ‘Δt’, is the time-step; ‘vn’, the initial velocity at time

t=n; ‘rn’, position at t=n and ‘Fn’, total force at time t=n. At time step t=n+1, velocity,

position and force, on the particle are calculated as shown in (1b). This is known as

Verlet Leap Frog algorithm of integration (Ying et al., 2003).

By the new set of positions obtained, the force components of atoms can be

calculated from a potential energy function, which describes the physical system

accurately. Amber (Ponder et al., 2003) and CHARMM (Brooks et al., 2003) are the

most commonly used potential energy functions in simulation studies of biomolecules.

The fundamental drawback of MD is that it requires a relatively large

computational effort in calculating force terms between atoms, raising the

computational processing time required for simulating biomolecules to weeks and some

times months. Parallel calculation of forces drastically reduces the simulation time.

(Plimpton et al., 1995).

www.manaraa.com

 4

1.2 MPI- Message Passing Interface and Portable Parallel Programming

The speed of light and the effectiveness of heat dissipation impose physical

limits on the speed of a single computer. Moreover, as performance of personal

computer (PC) has increased and the prices have fallen significantly, it has become

easier to acquire a cluster of PC’ that are networked together, to develop suitable

parallel codes to run on the cluster (Gropp et al., 1994).

The message passing model of parallel programming has a set of processes with

local memory. The processes communicate with each other by sending and receiving

messages. (Gropp et al., 1994)

MPI is a specific realization of message passing model. It is a library that

specifies the names, calling sequences and results of subroutines/functions/classes. The

programs developed using MPI library functions are compiled with ordinary compilers

and linked with MPI library. Communication occurs when a portion of a process’

address space is copied into another process’ address space. Processes are identified by

their ranks, which are integers from 0 to p-1 where, p is the total number of processes.

Process is a software term, which refers to the address space, whereas the term

processor is a hardware term representing a Central Processing Unit (Gropp et al.,

1994).

www.manaraa.com

 5

1.3 Physical System for MD - Potassium Channel

The physical system focused for developing the parallel MD code was

potassium channel pertaining to cell membranes. Potassium channels are made of

protein atoms in an aqueous environment. The protein atoms on the internal surface of

the channel are flexible and the water atoms inside the channel are diffusive in nature

(Karplus et al., 2002).

Potassium channels let inorganic ions like Na+ and K+ pass in and out of the

cell membranes. The passage of ions is crucial in intercellular communication and

signal transduction. Potassium channel is gated and is selective to the passage of

potassium ion. The recently discovered structure (PDB ID: 1BL8) of KcsA, a bacterial

Voltage gated Potassium Channel from Streptomyces Lividians, shown in Figure 1, is

frequently used for studying Potassium Channels. (Mackinnon et al,. 1998). X-ray

diffraction studies of crystallized protein structure of KcsA showed that it has a wall

made up of four identical protein monomers, which look like folded helices. The wall

has an outer helix, inner helix and a central-filter region. The channel is filled with

water molecules. (MacKinnon et al,. 1998)

MD is being used extensively in the field of potassium channels for determining

the dynamics of the water atoms inside the channel, dynamics of the potassium ion,

dynamics of the filter and free energy calculations on potassium ions. As there are

around 6000 protein atoms and 60,000 water atoms in KcsA, parallel MD codes

www.manaraa.com

 6

recently developed, like NAMD (Kale et al., 1996), are being used by the research

community for simulating potassium channels. (Furini et al., 2009)

As a primary step of optimizing MD, the goal of the research was to decrease

the cpu-time of simulation of water atoms in KcsA by parallel programming.

 Figure 1 Structure of potassium channel 1BL8
Side and top view

(MacKinnon et al,. 1998), (Humphrey et al., 1995)

www.manaraa.com

 7

CHAPTER 2 Literature Review

The number of atoms in the physical system and number of time steps needed

for simulation make MD computationally intensive. The fluctuations in positions of

atoms are of the order of angstroms. Thousands of atoms must be included into

calculations to simulate even a sub micron scale of physical system. The size of the

time step is determined by the frequency of vibration of atoms, which is of the order of

a femto second (Karplus et al., 2002). Thousands of time steps are necessary to

simulate even picoseconds of real time. Because of these computational demands,

optimizing MD calculations for clusters of processing units, has gained significance and

the attention of researchers (Plimpton et al., 1995).

The force terms involved in MD calculations may either be long range or short

range forces. For long range forces, such as columbic interactions, all charged atoms

interact. For a system comprising N atoms, directly computing these forces scales with

N2 and is computationally prohibitive for a large N. Algorithms like (1) Particle Mesh

Algorithm (PME) which scales with f(M)N, where M is the number of mesh points and

f(M) is a function of M, specific to the physical system (2) Hierarchical Method, which

scales with Nlog(N), and (3) Fast Multi-Pole Method, which scales with N, have been

developed to overcome the difficulty in calculating long range forces

 (Plimpton et al., 1995).

www.manaraa.com

 8

Short -range interactions are less prohibitive because the ranges of influence of

inter- atomic forces can be truncated using a cut-off distance, outside of which all

interactions are ignored. In such cases, Neighbor List Algorithms are used to maintain a

list of atoms, within the cut off radius from each atom (Plimpton et al., 1995). Linked

Cell Method divides the physical system into 3D cells with length greater than cut-off

radius. The force terms of atoms belonging to a particular cell are limited to that cell

and its immediate neighbors only (Plimpton et al., 1995). Additional time-savings can

be made by applying Newton’s Third Law by computing force terms only once per each

pair of interacting atoms.

Also, given the fact that MD computations are inherently parallel because of

their explicit nature, there has been considerable effort by the researchers in the last few

years to exploit this parallelism on various machines to improve the performance of MD

programs. A predetermined set of atoms (Atom Decomposition), or a predetermined set

of force calculations (Force Decomposition), or a single portion of the physical domain

(Spatial Decomposition), is assigned to each processor. Most MD softwares being

developed use one or a combination of these three methods of decomposing calculations

to processors (Plimpton et al., 1995), (Murty et al., 1998), (Brown et al., 1997).

Earliest versions of CHARMM, GROMOS, Amber, EGO and Blue Matter

(developed by IBM), use Atom Decomposition (AD). Other codes, such as

www.manaraa.com

 9

DL_POLY_3, NAMD2, GROMACS, MOLDY, latest version of CHARMM, NW

Chem, PMD, SIGMA, ddgmq, and Euler Gromos, use Spatial Decomposition (SD)

(Izaguirrre et al., 2004), (Zhestkov et al., 2008), (Refson et al., 1999).

Table 1 illustrates some of the earliest results using AD, Force Decomposition

(FD), and SD on an Intel cluster with 32 and 64 processors.

www.manaraa.com

 10

Table 1 CPU-Seconds/time step for AD, FD and SD methods
N – Number of atoms, P- Number of processors. (Plimpton et al., 1995)

METHOD N P=32 P=64

AD 500 0.0111 0.0088
 2048 0.0446 0.0336
 4000 0.0807 0.0616
 6912 0.138 0.103
 10976 0.22 0.164
 16384 0.337 0.249
 32000 0.635 0.474
 50000 0.993 0.74

FD 500 0.0098 0.00695
 2048 0.0359 0.025
 4000 0.112 0.0759
 6912 0.18 0.122
 10976 0.521 0.349
 16384 0.828 0.544
 32000 1.75 1.1
 50000 NA 6.04

SD 500 0.0129 0.0106
 2048 0.0321 0.0189
 6912 0.0768 0.0436
 16384 0.161 0.0874
 50000 0.42 0.224

www.manaraa.com

 11

AD, FD and SD have been used extensively by many MD codes. NAMD

(Kale et al., 1996), is one such software that is being used extensively in the research

field of ion channels. Apart from SD, NAMD has other features, like Object Oriented

Programming (OOPS), multiple-time step integration, message-driven scheduling of

processes, full electrostatics-calculation and multiple threads of control. Table 2 has the

earliest results reported by NAMD with a system containing 4885 atoms simulated for

20 time steps.

Table 2 Earliest results of NAMD
 N-Number of atoms, P-Number of processes (Kale et al .1996)

N P
Run time sec/20

steps
4885 1 118
4885 2 655
4885 4 411
4885 8 241

Table 3 shows the earliest results of NAMD, compared with the results of X-

PLOR and CHARMM, for a system containing 32687 atoms simulated for 1000 time

steps (Kale et al., 1996).

www.manaraa.com

 12

Table 3 Comparison of NAMD with X-PLOR and CHARMM
Run time/1000 time steps in minutes, N-Number of atoms, P-Number of processes. (Kale et al .1996)

N P NAMD X-PLOR CHARMM
32687 1 304.72 237.45 255.78
32687 2 163.88 125.38 157.27
32687 4 92.06 75.45 119.25
32687 8 50.65 46.38 64.18

Although many MD codes recently developed, like NAMD, are using SD, it is

disadvantageous with physical systems with complex geometries. Division of such a

system into uniform cells is a tedious and complicated process. AD however has a

disadvantage of requiring global communication of data, but has an inherent advantage

of being simple in load balancing and distribution of force calculations to processes

(Plimpton et al., 1995). New efficient algorithms of global communication and faster

ways of electronically communicating data between processors of a cluster are being

developed making AD a natural choice for building novel MD simulations

Table 4 shows a comparison of CPU seconds per communication call, varying

the data sizes, reported for three different algorithms; (1) long (2) short and (3) hybrid.

‘Broadcast’ sends data from the root process (rank=0) to the rest of the processes.

‘Collect’ collects data from all the processes to store the data in an array local to the

root process. ‘Global sum to all’ is a combination of ‘Collect’ and ‘Broadcast’, where

the root collects the data, and the collection is sent to the rest of the processes, such that

all the processes have a copy of the entire data. Figure 2 shows the hybrid algorithm for

www.manaraa.com

 13

performing a ‘Broadcast’ operation on an array X[x0,x1,x2,x3]. The root has to send X

to all the other processes invoked by the parallel code. Each of the arrows indicates a

pair of ‘Send’ and ‘Receive’ operations between a pair of processes. Conventional

Broadcast sends X to each process, which requires nP operations, where ‘n’ is the

number of elements in the array and ‘P’, the number of processes invoked. Hybrid

algorithm shown in Figure 2, sends half of the elements of the array to the next process,

until n individual elements are distributed evenly to the first n processes, after which,

the first n nodes send their copies of the elements to the rest of the processes. The

adjacent processes communicate with a pair of ‘Send’ and ‘Receive’ operations until all

the processes have a copy of the array X (Bruck et al.. 1997).

www.manaraa.com

 14

Table 4 New efficient algorithms for communications (Bruck et al., 1997)
Comparison of CPU time in seconds taken by each algorithm for reported communication

Operation Algorithm

Data
size

256 B

Data
size

262144
B

Data
size

1048576
B

 short 0.00128 0.12401 0.48549

Bcast long 0.02939 0.05426 0.11965
 hybrid 0.00139 0.03932 0.09957

 short 0.00338 0.07789 0.29512

Collect long 0.02672 0.04358 0.08838
 hybrid 0.00355 0.03074 0.07469

Global short 0.00676 0.15933 0.07469
sum to all long 0.05547 0.09729 0.60273

 hybrid 0.00696 0.07251 0.19747

www.manaraa.com

 15

Figure 2 Hybrid algorithm for Broadcast
(Bruck et al., 1997)

www.manaraa.com

 16

CHAPTER 3 Research Objectives

Although many algorithms, programs and models for MD simulations have been

developed, there is still a huge potential for new developments that would address basic

issues with all MD simulations. Customizing the code depending on the needs of the

physical system is yet to be achieved in the field of computer simulation. Source codes

declared by some of the softwares are filled with programming language intricacies-

difficult to interpret and connect to the actual theory of MD. According to a study of

parallel applications, published on 10/10/2006 in a newsletter for ‘Electronics, Design,

Strategy’, the majority of parallel application prototypes (65 percent) are developed in

very high level languages (VHLLs) such as MATLAB, Mathematica, Python, and R. A

private organization, Simon Management Group, which offers business management

solutions, conducted this study (www.simonmanagement.com).

The availability of computing resources is another major constraint in opting for

a particular MD program. Also, debugging public domain and commercial MD

softwares is a tedious process, as there are no simple debugging options normally

available to users. The study conducted by Simon Management Group surveyed more

than 500 users of parallel computing resources, to estimate the span of developing a

typical parallel application, and revealed that 20% of the respondents’ projects

consumed two to three years of their time.

www.manaraa.com

 17

In this scenario, where efficient but complicated hybrid MD/BD (Brownian

Dynamics) codes exist; the transparency involved in using a straightforward parallel

MD code could be the deciding-factor in its choice. As MD is an integral part of the

more efficient hybrid multi-time-step MD/BD code (Ying et al., 2003), uncoupling the

classic MD code from the hybrid code and making it fast and compact, gained the

interest of this research.

The objective of this research is to develop a simple and efficient parallel MD

code by cultivating a competent parallel scheme, establish a favorable communication

system between the parallel processes calculating force terms and optimize the

communication by reducing the idle time of the processes. The efficiency of the parallel

MD code in cutting down the cpu-time, will be tested on water inside a potassium

channel (KcsA). The scalability of the parallel program with 2000-60,000 atoms and 4-

15 processes will be determined.

www.manaraa.com

 18

CHAPTER 4 Research Methods

4.1 Protein Data Bank

The structural aspects of the protein wall of KcsA were obtained from PDB file

1BL8 (Mackinnon et al., 1998). The text file thus obtained had 3D coordinates of atoms

detected using X-ray Crystallography. The hydrogen atoms, being too small to be

detected using X-ray crystallography, were missing. An example of the PDB format

corresponding to the format given in Table 5 is,

ATOM 1 N ALA A 23 65.191 22.037 48.576

Table 5 PDB format

S.NO COLUMN FIELD DEFINITION OF THE FIELD

1 1-6 ATOM Record name ATOM, HETATM
2 7-11 1 Serial number of the atom
3 13-16 N Name of the Atom
4 18-20 ALA Name of the residue
5 22 A Chain identifier
6 23-26 23 Sequence number of the residue
8 31-38 65.191 Position Co ordinate x in Angstroms
9 39-46 22.037 Position Co ordinate y in Angstroms

10 47-54 48.576 Position Co ordinate z in Angstroms

www.manaraa.com

 19

4.2 Preparation of Input Files

The preparation of the system is shown in Figure 3. The missing hydrogen

atoms were added to the PDB file wherever necessary using Accelrys Pro software.

Masses were assigned to individual atoms and the centre of mass of the protein was

determined. The origin was then shifted to the calculated centre of mass. The relative

positions of the atoms were calculated and the partial atomic charges were added to the

text file according to Amber 95 (Cornell et al., 1995). The new file obtained had around

5200 protein atoms and was named ‘protdata’.

The Lennard-Jones (LJ) parameters describe the interaction potentials between

atoms. The parameters were taken from AMBER 95 (Cornell et al., 1995). The input

text file ‘protdata’ was read and the lj data of each atom was independently recorded

into another text file. This file was named ‘ljdata’.

SOLVATE 1.0 was used for introducing water as a solvent into the channel. The

solute (protdata) was solvated in a cubic water box. Water atoms were placed starting

from a minimum distance (overlap radius) from each atom. Layer by layer, water atoms

were added until the specified thickness was met. The length of the box thus generated

was 91.808 A0. The total number of water atoms in the box was approximately 60,000.

The cubic model was chosen to make periodic boundary conditions easier. The

positions of water atoms were recorded in a text file ‘waterdata’.

www.manaraa.com

 20

The 3 files thus prepared, protdata, waterdata and ljdata, were input files to the

main MD program ‘potch.f’.

Figure 3 Flow chart, Preparation of Simulation System

PDB: 1BL8

H atoms added

Masses, Charges added

LJ constants added

MD code: potch.f

Water atoms added

www.manaraa.com

 21

4.3 MD Program potch.f

The structure of the program was divided into four parts,

1. Variable declaration. The data needed was declared by specifying the type of

each variable and the length of each array.

2. Parameter Declaration. The parameters needed for the calculations were

numerically declared. All the quantities were in SI units. The declared values

were printed into text files. The list of the variables and their values are given in

Table 6.

3. Reading and formatting input files. The input files, protdata, waterdata, ljdata,

were read and the values were captured into the local variables declared in the

program. The corrections needed for converting quantities to SI system of units

were done. The water atoms were coded according to the type of the atom, icode

= 1 for Oxygen and icode = 2 for Hydrogens. Modified Simple Point Charge

(SPC) model of water was used. A number was assigned to each water molecule

for identification, which was stored in the array ‘imol’. The effective peptide

diameter, peptide volume were calculated. The parameters are reported in Table-

6. Scaling all the physical quantities avoided dealing with extremely large or

extremely small values. The parameters were printed into separate files for

checking.

www.manaraa.com

 22

Table 6 List of Simulation-Parameters,
SI units otherwise stated.

S.NO Parameter Value

1 Temperature of water 310.15

2 Mean fluid velocity 0.0

3 Boltzmann’s constant 1.38048e-23

4 Molecular mass of water 2.99e-26

5 Relative H locations to O (5.776e-11, 5.776e-11, 8.163e-11)

6 O-H Length (water) 0.1e-09

7 H-H Length (water) 0.16328e-09

8 Bulk water density (number/m3) 3.337e28

9 Dielectric constant of water 80.0

10 LJ constants for water (σ,ε) (nm,KL/mole) (0.340, 0.680)

11 Cut off potential distance (nm) 0.85

12 Time step (femto seconds) 0.5

13 Number of water atoms in box 60000

14 Number of peptide atoms 5270

15 Pi 3.1415297

Actual MD. The details of the potential energy function used in the MD code are

given in Figure 4. Verlet Leap Grog Algorithm of integration (Appendix B),

conserving, number of atoms, volume and the temperature of the system, was

implemented (Ying et al., 2003). Initial velocities of atoms were generated using

Maxwellian distribution based on the temperature of the system. The random

number generators used for this purpose were declared as subroutines and were

defined within the program to make it portable. The generated velocities were

www.manaraa.com

 23

scaled to the temperature of the system. The forces on atoms were initialized to

zero. The time-step calculations of positions were done in a new loop over time,

details of which are shown in Figure 5. The positions were updated after each time

step. The periodic boundary conditions were applied and any atom that escaped the

box was sent to the next periodic cell in that direction. The positions were printed

into text files at this stage. The inter-molecular and intra-molecular forces of water

atoms, the protein-water forces were dealt separately as shown in Figure 6.

Modified SPC model was used for treating intra-molecular forces of water (Ying et

al., 2003). Reaction Field theory was used for calculating electrostatic force

components between atoms. (Ying et al., 2003). The calculated forces on each atom

were totaled for calculating the combined force of all the other atoms. The three

components of the force (fx,fy,fz) were calculated independently. The velocities of

atoms at time step t, were determined from atomic displacements at time t+Δt. To

keep temperature constant, velocity rescaling was used (Ying et al., 2003). The

simulation was run for 1000 steps to allow water to equilibrate.

Uij =Ubonded +
Aij

rij
12 −

Bij

rij
6 +

qiqj

εriji< j

atoms

∑
i< j

atoms

∑

Figure 4 Details of MD code

www.manaraa.com

 24

Figure 5 Flowchart, Loop over time

Initial positions
Velocities

do iclock=1,imax

Update positions

Apply periodic boundary
conditions

Calculate velocities

Reset & Calculate forces

Recalculate velocities

Scale velocities

OUTPUT
positions

www.manaraa.com

 25

Figure 6 Flowchart, Force calculation

do i=1,n-1

do j=i+1,n

Intra-molecular forces
Inter-molecular forces

do k=1,ns

Protein-water forces

if(imol(i).eq.imol(j))
N

Y

www.manaraa.com

 26

4.4 Parallel Schemes for MD

The literature classified parallel schemes being employed currently by most MD

codes into three categories. All the schemes were described for a system of N atoms and

P processors. Computation load and communication load on each processor were also

discussed.

1. ATOM DECOMPOSITION METHOD (Plimpton et al., 1995) : The force

calculations on a fixed group of atoms (N/P), go to fixed processors (P). Each

processor calculates the total force on each atom in the group (N/P) allotted to it.

The group of atoms mapped to each processor, remains unchanged with time.

The computation load on each processor is of the order of O(N/P). The data that

should be communicated between processors is of the order N, as all the

processors need the positions of all the atoms for calculating the combined force

on each atom. However, this reduces the N/N matrix of force elements to

((N/P)xN)) on each process. This method was used by earlier versions of

CHARMM, GROMACS and the first version of Bluematter released by IBM

2. FORCE DECOMPOSITION (Plimpton et al., 1995) : The N2 force elements are

divided into blocks of size (N/√P)x(N/√P), numbered starting from the first row

to the last row. These numbers are formed into two strings (x, y) where x

consists of row-wise generated numbers and y consists of column-wise

generated numbers. A processor P(K), calculates the forces on elements in the

www.manaraa.com

 27

block numbered x(k), caused by the elements in the block numbered y(k).

Computation load for this method is of the order O((N/P)+(N/√P)).

Communication load is of the order O(3N/√P)

3. SPATIAL DECOMPOSITION (Plimpton et al., 1995) : The simulation box is

physically divided into 3-D shells and each shell is allotted to a processor.

Atoms move through these shells as time proceeds. The size and shape of each

shell depend on, N, P and the cut off radius used for interactions. As this method

takes full advantage of cut off radius, the data needed for calculation of forces

on atoms is local to the shell and a small layer of the shells surrounding each

shell. Thus the communication load is of the order O(6r(N/P)2/3), where r is the

cut off radius. Computation load is of the order O((N/P)+(6r(N/P)2/3)). The

disadvantage of this method is complication involved in physically splitting the

system into equal spaces to balance the load on each processor and

communication of data between adjacent shells.

www.manaraa.com

 28

4.5 Choice of the Parallel Scheme

Given the limit over the number of nodes available, which was 15, the literature

suggested that AD, FD, SD would give similar results in cutting down the execution

time. AD, being simple to incorporate into the existing serial program, was chosen.

There were two options in incorporating AD for a system of atoms, (1) Master Slave

Model (MSM), (2) Traditional AD (TAD). In MSM, the root does not share the

computation load and is responsible only for driving the communication between the

rest of the processes to complete computation. Load distribution over processes is

uneven in this case. TAD makes the root share the computation load thus guaranteeing

load balance but has double the communication load of the MSM.

A hybrid algorithm of MSM and TAD was developed for incorporating the good

features, load-balance and optimal communication. A slight over-load on the root was

created by making it, share the computation load, and for driving the communication

between processes. Placing a function after computation and communication leveled the

slight imbalance thus created, such that all the processes approaching the function,

would execute the next statement only when each process has called the function.

www.manaraa.com

 29

4.6 Preparation of potch.f for Introducing Parallel Scheme

Newton’s Third Law was used in calculating Fji as -Fij in the serial program.

Considering a square matrix of force components shown in the Figure 7, only the upper

triangular components are needed. In parallel environment, these components have to

be inter-communicated such that the lower-triangular elements are derived from the

upper triangular components. In a parallel code, this calls for a communication of the

force term Fji between the process responsible for calculations on ‘i’ and the process

responsible for calculations on atom ‘j’. Such communications were complicated to

handle in a parallel environment due to imbalances over the number of ‘Send’ and

‘Recv’ functions that would result on each process. Hence Newton’s Third Law was not

used in parallel program. Thus, intra-molecular forces for water molecules were most

effectively calculated in serial mode following which inter-molecular and protein-water

molecular forces were calculated in parallel.

www.manaraa.com

 30

Figure 7 Flowchart, Application of Newton’s Third Law

do iclock=1,n-1

do j=i+1,n

Fij=Fij+term
Fji=Fji-term

do iclock=1,n

do j=1,n

Fij=Fij+term

SERIAL PARALLEL

www.manaraa.com

 31

4.7 Computing Cluster

The parallel MD program was written in Fortran 90 with parallel functions from

the library mpich-1.2.7. The program was run on ‘Bach’ (bach.vcu.edu), a linux cluster

with 500 processors, 1 TB RAM and 73 GB of internal memory. The nodes of Bach use

ethernet to communicate with each other. Every user of Bach was given a username and

password for logging to the main node. All other nodes had identification numbers

(node-id) (ex: bach45). All programs were compiled using ‘mpif90’ and linked to the

parallel environment using ‘mpirun’. After compilation a linux shell script with

statements for executing the program on the assigned node, was submitted to the

engine. The script was submitted to the system using the command, ‘qsub’. The

submission script used is given in the Appendix A. Each submission thus made, called

‘job’ had a distinct identification number (job-id) on Bach. Once a job was initiated, the

command ‘qstat’ was used to check the status of the job, which showed job-id,

submission time, and the node-id. All the jobs were submitted on the head node. The list

of commands used on Bach is given in Table 7

www.manaraa.com

 32

Table 7 List of commands on Bach

Function

Command

Compiling $ usr/global/mpich-1.2.7/bin/mpif90 -c

filename.f

Linking $ usr/global/mpich-1.2.7/bin/mpif90 –o filename

filename.f

Linking to

parallel

library

This has to be included in the submission script

submit.sh. (APPENDIX A)

usr/global/mpich-1.2.7/bin/mpirun –np p filename

(p = number of processes)

Submitting a

job to cluster

$ qsub submit.sh

Checking the

status of a

job

$ qstat –u username

www.manaraa.com

 33

4.8 Parallel Programming Library mpich-1.2.7

Before any parallel schemes were employed in the main MD program potch.f,

the parallel library mpich-1.2.7, and parallel functions were tested using elementary

programs. The submission script is reported in the Appendix A. Communication

between processes was tested using both blocking and non-blocking modes. The list of

functions tested is shown in Table 8. All the functions are called using a tag, ‘call’

‘MPI_Init ()’ and ‘MPI_Finalize ()’ are first 2 of the 3 important and basic

functions which appear in all parallel programs. ‘MPI_Init ()’ marks the beginning of

parallel environment and has to be called right after the variable declaration.

‘MPI_Finalize ()’ marks the end the parallel code. The arguments common to the three

basic functions are the communicator ‘MPI_COMM_WORLD’, which is used through

out the code for communicating data, and an error tag ‘ierr’, which stores a number

indicating either success or failure of the function. The error tag is a common argument

to all the parallel functions listed in the Table 8.

‘MPI_Comm_rank ()’ has 3 arguments, an integer variable which stores the

rank of the process calling it, ‘MPI_COMM_WORLD’ and ‘ierr’. This has to be called

after MPI_Init().

‘MPI_Comm_size ()’, again, has 3 arguments, an integer variable which stores

the total number of processes initiated by the command ‘mpirun’, the communicator,

‘MPI_COMM_WORLD’ and the error tag, ‘ierr’.

www.manaraa.com

 34

‘MPI_Send ()’ (Send) is used by a process to send a single element or a string

of elements to another process. The first argument is the starting address of first element

of the array, the second argument is an integer which has the number of elements to be

sent, the third argument is the data type of the elements being sent, the fourth argument

is the rank of the destination, the fifth argument is a tag which is used to match the

‘Send’ with the corresponding receiving call made by the destination, sixth argument is

the communicator ‘MPI_COMM_WORLD’ and the seventh argument is the error tag

‘ierr’. The communication completes when the destination process receives the data.

Until the communication is complete, the statement after ‘MPI_Send ()’ is not

executed. In other words, ‘MPI_Send ()’ blocks the program until the receiving process

calls the corresponding ‘MPI_Recv ()’.

MPI_ISend (), contrastingly, executes the next statement of the code as soon as

it is called.

‘MPI_Recv ()’ (Recv) receives a single element of the array or a string of

elements from the process sending the data. The first argument is the starting address of

the first element of the array, the second argument is an integer which has the number

of elements to be received, the third argument is the data type of the elements being

received, the fourth argument is the rank of the sending process, the fifth argument is a

tag which is used to match the ‘Recv’ with corresponding the ‘Send’ call, the sixth

argument is an integer which stores the information of the data being received, the

seventh argument is the communicator operating between sending and receiving

processes and the eighth argument is the error tag.

www.manaraa.com

 35

‘MPI_Recv ()’ is a blocking communication and does execute the next

statement until the communication is complete. ‘MPI_IRecv ()’ is a non-blocking

version of the ‘Recv’ call. A blocking ‘Send’ can be paired with a non-blocking ‘Recv’.

Similarly, a blocking ‘Recv’ can be paired with a non-blocking ‘Send’. Such

combinations, when improperly used, have a disadvantage of creating a dead lock,

where a communication cannot be completed. An example of such a dead lock is shown

in Figure 8 where two calls of ‘Send’ are made with two different tags. The receiving

process has ‘Recv’ statements in the reverse order of tags. This creates a deadlock

where intended communications do not happen.

www.manaraa.com

 36

Table 8 List of basic mpich-1.2.7functions

Functions tested Duty

MPI_Init() Initializes MPI environment

MPI_Comm_rank() Stores the ID of the process in the variable declared in its

argument

MPI_Comm_size() Stores the total number of processes in the variable declared in its

argument

MPI_Send() Sends the buffer declared, to its destination by specifying the

communicator. The buffer is cleared after the communication

ends.

MPI_Recv() Receives the buffer through communicator and stores it in

variable specified in its argument.

MPI_ISend() Sends the buffer declared, to its destination by specifying the

communicator. The buffer is cleared instantly.

MPI_IRecv() Receives the buffer through communicator and stores it in

variable specified in its argument. The code is blocked until the

communication ends.

MPI_Bcast() Broadcasts the buffer to all the processes.

MPI_Barrier() Blocks the code until all the processes call it.

MPI_Finalize() End of MPI.

www.manaraa.com

 37

Figure 8 Deadlock created with blocking Send and Recv calls

if(myid.eq.0) then
 dest=1
 a=2
 b=3
 tag=0
 dtag=1
 call MPI_Send(a,1,MPI_INTEGER,dest,tag,MPI_COMM_WORLD,ierr)
 call MPI_Send(b,1,MPI_INTEGER,desr,dtag,MPI_COMM_WORLD,ierr)
 end if
if(myid.eq.1) then
 tag=0
 dtag=1
 call MPI_Recv(b,1,MPI_INTEGER,0,dtag,MPI_COMM_WORLD,stat,ierr)
 call MPI_Recv(a,1,MPI_INTEGER,0,tag,MPI_COMM_WORLD,stat,ierr)
 print *,’a=‘,a,’b=‘,b
end if

0 1

Send a
-
-
-

Recv b
-
-
-

www.manaraa.com

 38

4.9 Designing the Parallel Algorithm

After testing the basic functions of the parallel library mpich-1.2.7, the hybrid

algorithm of TAD and MSM was designed. The parallel scheme employed is shown in

the flow Chart of Figure 9. The first three parts of the code were common to all the

processes. (1) variable declaration (2) fixing the parameters (3) reading and formatting

inputs.

As shown in the flowchart in Figure 9, after the do loop on the time step, the

positions were updated and broadcasted to all the processes by the root process. The

force calculations on the first P atoms were taken care by the corresponding P

processes. If ‘i’ was the id of the first atom assigned to the processor Pi, the group of

atoms assigned to the process Pi was (i, i+P,i+2P,i+3P…). Thus load balance was

achieved in this scheme. The calculated force components in x, y and z directions, on

each atom were sent to the root. After the processes calculated forces components, the

root received the forces, calculated velocities and updated positions. The positions were

broadcast to all the processes for calculation of forces in the next time step.

www.manaraa.com

 39

Figure 9 Flowchart of the algorithm designed

do iclock=1,imax

All processes: Reset forces

Root: Broadcasts updated positions to processes

do i=myid,n,size

Process 0
Calculates

F(4)
F(8)

Process 1
Calculates
and sends

F(1)
F(5)
F(9)

to process 0

Process 2
Calculates
and sends

F(2)
F(6)
F(10)

to process 0

Process 3
Calculates
and sends

F(3)
F(7)

to process 0

Root
do j=1,size-1
do k=1,chunk
Receives F(k)

www.manaraa.com

 40

4.10 Communications - Test

A model program ‘newcomtest.f’, listed in Appendix B, was developed for

testing the communication adopted in the algorithm. As a part of the test program,

positions and forces on atoms were declared as real data types. An initial loop declared

all the positions of atoms as real numbers. Another loop calculated the force

components over atoms as half the value of the declared positions. The force

calculations were done in parallel and were sent to the root. The root received the force

components and reassigned the values of individual force components to the

corresponding atom-positions, which were broadcast to all the processes in the next

time step. The positions of atoms were printed at each time step to check if their values

halved each time.

4.11 Debugging the Test Program

The model program resulted in the p4_error and segmentation problems. It was

presumed that the communication sandwiched in between computational steps caused

segmentation errors. Each process calculated the total force on each atom allotted to it

and communicated the value of the total force on each atom with the root. The root had

to schedule ‘Recv’ statements according to the order of ‘Send’ calls made by processes,

www.manaraa.com

 41

which was fixed by the program in the increasing order of the id’s of the processes.

With N force terms and corresponding N ‘Send’ calls made by the processes,

scheduling the calls made by processes created congestion.

The algorithm was improved to reduce the number of ‘Send’ and ‘Recv’

statements keeping the total size of the data constant. This was achieved by gathering

all the force components calculated by a process into 3 arrays, each for x,y,z

components, with their corresponding atom id’s into another array. After all the

calculations on the set of allotted atoms were done, each process would send the arrays

to the root. The root would receive arrays from each process, in the order of their ranks

(id’s) and retrieved force components based on the atom id’s from the received arrays.

This would reduce the number of ‘Send’ and ‘Recv’ calls from ‘6N’ (N=number of

atoms) to ‘6*(P-1)’ (P=number of processes), keeping the size of the data constant.

Upon testing, the new model continued to give segmentation errors.

Table 9 List of errors in test progam.

ERROR Interpretation

P4_error SIGEGV: Could not send to fd=5 Segmentation error: One of the processes

died early, leaving the communication un

successful (Algorithm should be reviewed)

P4_error SIGEGV: Could not write to fd=5 Segmentation error: One of the processes

dies early, leaving the communication un

successful (Algorithm should be reviewed)

www.manaraa.com

 42

It was supposed that bringing entire communication together could resolve the

segmentation problem. The ‘Broadcast’ calls, which were originally scheduled before

force calculations started, were shifted and placed after the ‘Recv’ calls from the root.

The communication then functioned as a packet of ‘Send’ and ‘Recv’ calls, which sent,

received and broadcast values after each process completed its calculations. Upon

testing, the model ‘newcomtest.f’ functioned as anticipated.

4.12 Parallel MD Program, parmd.f

Following the developed algorithm and model, parallel MD program parmd.f

was developed.

The first three parts of the code, (1) variable declarations (2) fixing the

parameters (3) reading and formatting inputs, were kept common to all the processes.

The force calculations on the first P atoms were taken care by the corresponding P

processes. Pi calculated forces on, (i, i+P,i+2P,i+3P…) atoms. The calculated

combined force component on each atom was stored in an array, local to each process.

The ID’s of the atoms were stored in another array in the order (i, i+P,i+2P,i+3P…).

Thus each process had four arrays, tempfx, tempfy, tempfz, temp, three for the force

components and one for the atom ID’s. These were sent to the root after each process

completed the calculations on the assigned N/P atoms.

www.manaraa.com

 43

 The root received the arrays in the order of the ranks of the processes and stored

them into a consorted array, which had total force components on each atom. The root,

from the forces received, calculated velocities and positions from the retrieved force

components. The root broadcast updated positions to all the processes. This step ended

the communication packet and the loop over time. As a fresh time-step started, force

calculations resumed using updated positions.

MPI_Barrier () calls were used before and after the loop, which calculated the

forces to guarantee that all the processes finish their calculations before communication

start and all processes start fresh calculation of force components only after receiving

the updated positions from the root.

4.13 Debugging the Parallel MD program, parmd.f.

The parallel program had occasional reports of segmentation problems.

Introducing message driven communication optimized the scheduling of ‘Send’ calls.

MPI_Any_Source (), was used in the ‘Recv’ calls made by the root. This would

allow a ‘Recv’ statement to communicate with any process, without the condition

imposed on it earlier to receive data from processes in the order of their ranks. This is

shown in Figure 11. In other words, the order of processes calling ‘Recv’, which was

fixed to be in the order of their ranks, was changed such that the process finishing

www.manaraa.com

 44

calculations first would call the ‘Recv’ first, making it the FIFO (first in first out) form

of the queue system. The rank of the process was then stored in a variable, which was

used in the following ‘Recv’ statements such that all the ‘Recv’ statements were called

by a single process at a time.

 The overlap distance employed was increased to 0.3 angstroms. Any smaller

quantities were corrected to 0.3. All the variables were declared to avoid errors

occurring from data type of the variable. ‘Implicit none’ statement was used to assure

there are no quantities left undeclared.

After the listed changes were made, the program functioned as anticipated. The

results obtained were compared with serial program and were found to be the same. The

final flowcharts of calculations inside loop over time and force calculations for a system

of 10 atoms and 4 processes are presented in Figure 10 (a) and (b).

www.manaraa.com

 45

(a)

Initial positions
Velocities

do iclock=1,imax

Update positions

Procs: Calculate forces in parallel

Procs: Send force arrays to root

ALL Procs: Reset & Calculate forces

Root: Receive P force arrays

Calculate & Scale velocities

OUTPUT
positions

www.manaraa.com

 46

(b)

Figure 10
(a) and (b) :Calculations inside time-loop of parmd.f

All processes: Fx=0.0 Fy=0.0 Fz=0.0

do i=myid,10,size

Process 0
Calculates

F(4)
F(8)

temp(1)=4
temp(2)=8

tempF(1)=F(4)
tempF(2)=F(8)

Process 1
Calculates

F(1)
F(5)
F(9)

temp(1)=1
temp(2)=5
temp(3)=9

tempF(1)=F(1)
tempF(2)=F(5)
tempF(3)=F(9)

Send
temp

tempF to 0

Process 2
Calculates

F(2)
F(6)
F(10)

temp(1)=2
temp(2)=6
temp(3)=10

tempF(1)=F(2)
tempF(2)=F(6)

tempF(3)=F(10)
Send
temp

tempF to 0

Process 1
Calculates

F(3)
F(7)

temp(1)=3
temp(2)=7

tempF(1)=F(3)
tempF(2)=F(7)

Send
temp

tempF to 0

Root : do j=1,size-1
Receive temp, tempF

do k=1,chunk
id=temp(k)
F(id)=F(k)

www.manaraa.com

 47

c BARRIER for all processes to complete calculations
 call MPI_BARRIER(MPI_COMM_WORLD,ierr)
 print*,'BEFORE WAIT*****I AM******',myid

c***
c if process is not head, send calculated forces to head
c
 if(myid.ne.0) then
 call MPI_SEND(temp(1),sz,MPI_INTEGER,0,0,
 & MPI_COMM_WORLD,ierr)
 call MPI_SEND(tempfx(1),sz,MPI_REAL,0,1,
 & MPI_COMM_WORLD,ierr)
 call MPI_SEND(tempfy(1),sz,MPI_REAL,0,2,
 & MPI_COMM_WORLD,ierr)
 call MPI_SEND(tempfz(1),sz,MPI_REAL,0,3,
 & MPI_COMM_WORLD,ierr)
 endif
c**

c**
c head stores collected forces into their proper places f
c head computes velocities
c
c Head revceives the calculated forces
 if(myid.eq.0) then
 k=1
 counter=1
 do 523 j=1,size-1
 call MPI_RECV(temp1(1),sz,MPI_INTEGER,MPI_ANY_SOURCE,
 & 0,MPI_COMM_WORLD,stats,ierr)
 iam=stats(MPI_SOURCE)
 call MPI_RECV(tx(1),sz,MPI_REAL,iam,1,
 & MPI_COMM_WORLD,stats,ierr)
 call MPI_RECV(ty(1),sz,MPI_REAL,iam,2,
 & MPI_COMM_WORLD,stats,ierr)
 call MPI_RECV(tz(1),sz,MPI_REAL,iam,3,
 & MPI_COMM_WORLD,stats,ierr)
 do 524 i=1,sz
 temp3=temp1(i)
 if(temp3.ne.0) then
 fx(temp3) = tx(i)
 fy(temp3) = ty(i)
 fz(temp3) = tz(i)
 write(21,501)iclock,temp3,icode(temp3),fx(temp3)
 501 format(i4,1x,i8,1x,i6,1x,10f10.2)
 counter=counter+1
 endif
 524 continue
 523 continue

Figure 11 Reception and retrieval of forces with message driven scheduling of processes

www.manaraa.com

 48

Figure 12 Flowchart, input files, execution and output files.

waterdata

protdata

ljdata

parmd.f

usr/global/mpich-1.2.7/bin/mpif90 –c parmd.f

usr/global/mpich-1.2.7/bin/mpif90 –o parmd parmd.f

usr/global/mpich-1.2.7/bin/mpirun –np p parmd

fort.20 fort.21

parmd.o

parmd

www.manaraa.com

 49

CHAPTER 5 Results and Discussions

5.1 Performance of the Parallel Program after Debugging.

The results from parallel program were consistent after debugging. The graph

shown in Figure 13 was generated in a microsoft excel sheet using the data from

cpu_time per time-step, for 10 time-steps, on the system comprising 20000 water atoms.

The parallel program ran on 4 processors. The ideally parallel curve was generated by

dividing each data point of the cpu_times recorded by the serial program by the number

of processes declared for the parallel program. The lag observed between the curve

generated by the parallel program and the ideal parallel curve was a result of the time

elapsed in communication of data between processes.

www.manaraa.com

 50

Performance of parallel program
 Case: n=20000, imax=10

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1 2 3 4 5 6 7 8 9 10
time step (0.5 femto seconds each step)

serial parallel np =4 ideal parallel np =4

Figure 13 Graph showing comparison of potch.f and parmd.f

5.2 Scaling with Number of Atoms

The scaling of the parallel program with number of atoms, in terms of cpu_time

per time step was determined for 2000-60000 atoms. However, the complete simulation

of KcsA is only relevant for the case of 60,000 water atoms. The graph shown in Figure

14, representing the scaling of parallel and serial programs with number of atoms was

generated in a microsoft excel sheet using means of cpu_time per time-step for 10 time

steps on 4 processors for the parallel program. As the number of atoms increased

beyond 20,000, there was almost four-fold reduction in the time taken by the parallel

www.manaraa.com

 51

program when compared to the serial program. This was important because most of the

biological systems had more than 20,000 atoms and needed 100,000 – 100,00,000 time

for complete study of their dynamics. The ideal parallel curve was generated by

dividing the cpu_times recorded by the serial program by number of processes declared

for the parallel program. For the typical case of potassium channel being considered, a

complete simulation, with 60,000 water atoms, a 40,000 time step simulation would run

for almost 84 days with the serial program and 22 days with the parallel program

developed.

Scaling w ith number of atoms

0
20
40
60
80

100
120
140
160
180
200

0 10000 20000 30000 40000 50000 60000 70000

time step (0.5 femto second each)

cp
u_

tim
e

se
co

nd
s

serial parallel np=4 ideal parallel np=4

Figure 14 Graph showing scaling of parmd.f with number of atoms

www.manaraa.com

 52

5.3 Scaling with Number of Processes

As the number of processes assigned to a parallel program increase, the

execution time of the program decreases down to a point after which the advantage of

parallel computing balance out the communication time between processes. For this

reason, different parallel algorithms designed for the same physical system, differ in

scaling with number of processes, depending on the way communication calls are made.

A variety of parallel MD codes, each of which are effective in a particular range of

processes, have been invented.

The scaling of parallel program with number of processes was tested on a

system with 20,000 water atoms for 10 time-steps. Each data point in the graph shown

in Figure 15 represents the mean of the cpu_time per time-step recorded by the program

for a number of processes. The tipping point of the curve, beyond which, the

communication between processes takes over the advantage of parallel computation of

forces, could not be established as the users of Bach were allowed to use a maximum of

15 processes. It was observed that the program scaled well for all the tested cases.

www.manaraa.com

 53

Scaling w ith number of processes

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of processes

cp
u_

tim
e

in
 s

ec
on

ds

cpu_time ideal

Figure 15 Graph showing the scaling of parmd.f with number of processes

Subtracting the calculated ideal cpu_time from the recorded mean cpu_times by

the parallel program parmd.f, generated the graph shown in Figure 16. For a system of

20,000 atoms, Figure 16 shows the best choice of number of processes, which was

observed as 15.

www.manaraa.com

 54

 Difference of parallel and ideal cpu_times

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16

N umb er o f p ro cesses

Dif ference of means

Figure 16 Graph showing the scaling of parmd.f with number of processes

5.4 Load Balance over Processes.

As each process calculated the total force executed by the system on the chunk

of atoms allotted, computation-wise, equal load was imposed on all of the processes.

This was tested on a system with 20,000 atoms and 15 processes. Figure 17 shows the

distribution of number of atoms over the processes. It can be noticed that processes

shared the computation on atoms equally, with an extra atom being assigned to

processes 1,2 and 3. Figure 18 shows the cpu_time per time step, recorded by each

process of the parallel program. Instead of printing the cpu_time to a file, ‘print to

www.manaraa.com

 55

screen’ option was used to record the cpu_time. It can be noticed that the cpu_times

recorded by the processes are evenly distributed around 5 seconds/time step.

Distribution of atoms to Processes

1332

1333

1334

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process ID

distribution of atoms, np=15

Figure 17 Graph showing the load balance on processes with parmd.f

Figure 18 Graph showing load balance on processes with parmd.f

cpu_time/time step distrobution over processes

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process ID

CPU time of
processes

www.manaraa.com

 56

5.5 Application of Newton’s Third Law

Applying Newton’s Third Law (NTL) in calculating force terms on atoms

halved the computation costs but increased the communication costs by a factor of

number of atoms involved. To optimize communication costs, application of NTL was

skipped in the parallel program. The impact of this choice was tested in 2 cases. (1) A

system with 4 processes by varying the number of atoms. (2) A system of 20,000 atoms

by varying the number of atoms. It was observed that application of NTL was

advantageous for smaller systems with less than 8000 atoms, for which, parallel and

serial programs, gave similar results. For larger systems with number of atoms greater

than 20,000 and with number of processes greater than 4, parallel program gave better

results. Figure 19 shows the scaling of parallel program with 4 processes, serial

program without NTL and serial program using NTL, with number atoms. It can be

clearly observed that up to 20,000 atoms, and 4 processes, curves representing parallel

and serial program using NTL almost overlap. Figure 20 was generated by subtracting

the mean of cpu_time recorded by the serial program using NTL from the means of

cpu_time recorded by the parallel program and serial program without NTL, for a

system with 20,000 water atoms with different number of processes. The graph clearly

shows the advantage of using parallel program with number of processes greater than 4.

www.manaraa.com

 57

Comparison of Serial, Parallel and Serial_Newtons law
models

0
20
40
60
80

100
120
140
160
180
200

0 10000 20000 30000 40000 50000 60000 70000

Number of atoms

m
ea

n
cp

u_
tim

e
pe

r t
im

e
st

ep

serial serial-new tons law parallel np=4

Figure 19 Scaling potch.f, parmd.f and newton.f with number of atoms

Comparison with Serial program using Newton's Law.

-10

-5

0

5

10

15

20

25

ser ser new 4 6 8 10 12 15

number of processes

difference of means of cpu_time/time step

Figure 20 Differential scaling of potch.f, parmd.f with respect to newton.f
with number of processes

www.manaraa.com

 58

5.6 Simulation of KcsA

The prepared system of KcsA with 60,000 water atoms and 5200 protein atoms

was simulated for 1000 time steps using 8 processes. Positions of the first 100 water

atoms were printed out each time step. The positions of water atoms before simulation,

after 200 steps and after 500 steps are shown in Figure 22. The total time for simulation

was 4999.135 seconds. Figure 21 shows the graph of CPU_time in seconds per

time/step. A sharp peak was observed at 635, 637 steps that took around 20 seconds

(CPU_time) to complete.

CPU_time in sec Job: 219449

0

5

10

15

20

25

1 59 11
7

17
5

23
3

29
1

34
9

40
7

46
5

52
3

58
1

63
9

69
7

75
5

81
3

87
1

92
9

98
7

time step

se
co

nd
s

Figure 21 CPU-time/step versus time step for simulation of KcsA

www.manaraa.com

 59

Figure 22 Simulation of KcsA, 100 atoms, after 200, 500 steps.

www.manaraa.com

 60

5.7 Portability

Although the program was developed on a Linux cluster, the code can be used

on other platforms, which have either a Fortran 77 or 90 compiler and mpich-1.2.7

library. The path of the mpi.h in the ‘include’ statement, ‘include ‘usr/global/mpich-

1.2.7/include/mpif.h’, should be correctly given when using the code on another cluster.

Other versions of MPI such as open mpi might require changes in the syntax of MPI

functions.

5.8 Interaction with VMD

Output files generated using the parallel program can be saved as text files and

opened as excel sheets to change the format to PDB format. Microsoft excel sheets can

be reopened as text files in the changed format, which in turn can be opened in VMD

editor for viewing the structure of the system.

www.manaraa.com

 61

CHAPTER 6 Future work

A parallel molecular dynamics program was developed for simulation of water

atoms inside potassium channel KcsA. The program has verlet integration scheme of

MD, SPC (simple point charge) model of treatment of water, reaction field theory for

calculation of long range electrostatic forces, scaling of velocities based on system

temperature, a hybrid AD algorithm for parallel force computations on water atoms and

message driven communication between processes.

The program can be taken to its next level by adopting the following points,

• The intra-molecular force calculations on proteins have to be introduced into the

code for introducing flexibility of protein atoms. Flexibility of proteins is

particularly important for simulating the gating mechanism of KcsA. An

additional loop for calculating the intra-molecular force components on protein

atoms, can be included within the loop for calculating force terms on water

atoms

• Newton’s law could be applied to the force calculations in parallel program to

observe the changes in communication it would cause. This is particularly

important for larger physical systems (greater than 60,000), after which

computations increase exponentially.

www.manaraa.com

 62

• Applets for thermodynamic free energy calculations and data analysis of the

updated positions and forces like RMSD plots and Raman plots can be

introduced.

• Object oriented programming with C++, would be another interesting change

that could be made that might improve the speed of the existing parallel

program. The positions, velocities, total force and other properties of a particular

atom can be declared as a class. This would significantly decrease the number of

communication calls in the parallel MD program.

• The code can be converted to GUI (graphical user interface) software, which

would take the simulation parameters and PDB file as input and generate

pictorial out put of the dynamics of the system.

www.manaraa.com

 63

REFERENCES

1. Alder, B., T. Wainwright (1957). "Phase transition for a hard sphere system." The

Journal of Chemical Physics 27(5): 1208-1209.

2. Aqvist, J., (2001). "K+/Na+ selectivity of the KcsA potassium channel from

micrpscopic free energy pertubation calculations." Biochimica et Biophysica Acta

(BBA) - Protein Structure and Molecular Enzymology 1548: 2.

3. Brooks, B.R. (1983). "CHARMM: A program for macromolecular energy,

minimization, and dynamics calculations" J. Comp. Chem 4(2): 187-217

4. Brown, D., H. Minoux, (1997). "A domain decomposition parallel processing algorithm

for molecular dynamics simulations of systems." Computer physics communications

103(2-3): 170-186.

5. Cornell, D. (1995). "A Second Generation Force Field for the Simulation of Proteins,

Nucleic Acids, and Organic Molecules", J. Am. Chem. Soc. 117: 5179-5197.

6. Gropp, W., (1994). " Using MPI, Portable parallel programming with message passing

www.manaraa.com

 64

interface", Scientific and Engineering Computation, 1994.

7. Humphrey, W., (1996). "VMD - Visual Molecular Dynamics", J. Molec. Graphics. 14:

33-38.

8. Izaguirre, J., T. Slabach, (2004). "ProtoMol, an object-oriented framework for

prototyping novel algorithms for molecular dynamics." ACM transactions on

mathematical software 30(3): 237-242.

9. Ponder, T.W., D.A. Case, (2003). "Force fields for protein simulations". J. Adv. Prot.

Chem. 66, 27-85.

10. Kale, L., A. Gursoy, (1996). "NAMD: a parallel, Object-Oriented Molecular Dynamics

Program." Journal of High performance computing applications 10(4): 251-268.

11. Karplus, M., J. M. Cammon, (2002). "Molecular Dynamics simulations of

biomolecules." Nature structural biology 9(9): 646-649.

12. MacKinnon, R. (1998). "The structure of potsassium channel; molecular basis of K+

conduction and selectivity." Science 280(5360): 69-74.

13. Murty, R., D. Okunbor (1999). "Efficient parallel algorithms for molecular dynamics

www.manaraa.com

 65

simulations." Parallel Computing 25(3): 217-230.

14. N Hamid, P., Coddington, (2007). "Averages, distributions and scalability of MPI

communication time for Ethernet and Myrinet networks." Proceedings of Parallel and

distributed computing and networks 551.

15. Noskov, S., Yu (2007). "Importance of Hydration and Dynamics on the Selectivity of

the KcsA and NaK Channels", J. General Physiology. 129: No .2: 135-143.

16. Plimpton, S. (1995). "Fast Parallel algorithms for short range molecular dynamics."

Journal of Computational Physics 117(1): 1-7.

17. Refson, K. (2000). "Moldy: a portable molecular dynamics simulation program for

serial and parallel computers." Computer physics communications 126(3): 130-135.

18. Wang, W., J. C.Phillips, (2005). "Scalable molecular dynamics with NAMD." Journal

of Computational Chemistry 26: 1781-1802.

19. Ying, Z., (2003). "Nonequilibrium, Multiple-Timescale Simulations of Ligand-Receptor

Interactions in Structured Protein Systems", J. PROTEINS. 52: 339-348.

20. Zhestkov, Y., B. Fitch, (2003). "Blue Matter, an application framework for molecular

www.manaraa.com

 66

simulation on Blue Gene." Journal of parallel and distributed computing 63(7): 759-

764.

www.manaraa.com

 67

APPENDIX A

Submission script.sh

#!/bin/bash
##

execute script in current directory
#$ -cwd
want any .e/.o stuff to show up here too
#$ -e ./
#$ -o ./
shell for qsub to use:
#$ -S /bin/bash
name for the job; used by qstat
#$ -N laxmi_test
number of processes is given ni the next line
#$ -pe mpich 8
#$ -V
##

WD="/usr/global/mpich-1.2.7"
export MPIRUN="/usr/global/mpich-1.2.7/bin/mpirun"
#export ssh=rsh
echo "MPIRUN == $MPIRUN..."
echo "--
--"
echo "sub_test.sh: My user name is `whoami`..."
echo "sub_test.sh: I'm on `hostname`.............."
echo "current directory is `pwd`..."
echo "sub_test.sh: Beginning @ `date`..."
echo "sub_test.sh: TMPDIR == $TMPDIR..."
echo "P4_RSHCOMMAND == $P4_RSHCOMMAND..."

if [-e $TMPDIR/machines]; then
 echo "It's alive... ALIVE!!!!"
 echo "mm"
 cat $TMPDIR/machines
 echo "mm"
 echo "cp-ing machines file to ./"
 cp $TMPDIR/machines .
 echo "./machines == "

www.manaraa.com

 68

 cat ./machines
 echo "............."
else
 echo "OHNOZE..."
fi

echo "Running job with $WD/bin/mpirun:"
echo "Doing:"
echo " $WD/bin/mpirun \\"
echo " -np $NSLOTS \\"
echo " -machinefile ./machines \\"
echo " /home/mullapudil/RECENT/dorodie/temp3"

the command mpirun to run the file temp4 in parallel mode
WD : path of the command
$NSLOTS (number of processes is taken from pe mpich 8

$WD/bin/mpirun \
 -np $NSLOTS \
 -machinefile ./machines \
 /home/mullapudil/RECENT/doordie/temp4

echo "sub_test.sh: Ending @ `date`..."
echo "--
--"
##

www.manaraa.com

 69

APPENDIX B

Communication test newcomtest.f

 program communication
c to test the communication of the main MD program
c Forces are calculated in parallel,
c particle positions are clculated along with forces
c individual processes send atom ID's
c root receives them
 integer k,ierr, myid, size,sz,temp3,j,iam
 integer stats(MPI_STATUS_SIZE),m,imax,req(5),i
 real temp2
 real tempx(100000),tempy(100000)
 real tempz(100000)
 integer temps(100000),temp1(100000),counter
 real temp1x(100000), temp1y(100000),temp1z(10000)
 real x(100000),y(100000),z(100000)
 real fx(100000),fy(100000),fz(100000)
 include '/usr/global/mpich-1.2.7/include/mpif.h'
c---
c mpi functions, init,rank,size are declared
c---
 call mpi_init(ierr)
 call mpi_comm_rank(MPI_COMM_WORLD,myid,ierr)
 call mpi_comm_size(MPI_COMM_WORLD,size,ierr)
 print*,'I am in parallel world'
c---
c parameters m=no 0f particles,x,y,z,co ordinates of particles
c temps carries ID of particles, tempxyz,txyz carry temporary
c co ordinates,k is a counter used
c---
 m=2000
 sz=m
 temps=0.0
 tempx=0.0
 tempy=0.0
 tempz=0.0
 temp1=0.0
 temp1x=0.0
 temp1y=0.0
 temp1z=0.0
 do 100 i=1,m
 x(i)=120.0

www.manaraa.com

 70

 y(i)=120.0
 z(i)=120.0
 100 continue
c
c
 do 1 iclock=1,20
 counter=1
c parallel
 do 2 k=myid,m,size
 x(k)=x(k)/2.0
 y(k)=y(k)/2.0
 z(k)=z(k)/2.0
 temps(counter) = k
 tempx(counter) = x(k)
 tempy(counter) = y(k)
 tempz(counter) = z(k)
 counter=counter+1
 write(7,99)iclock,k,x(k),y(k),z(k)
 99 format(i5,1x,i5,1x,5f8.3,1x,5f8.3,1x,5f8.3)
 2 continue
c--
c all processes send temps to the root
c--
 call MPI_BARRIER(MPI_COMM_WORLD,ierr)
 if(myid.ne.0) then
 call MPI_SEND(temps(1),m,MPI_INTEGER,0,0,
 & MPI_COMM_WORLD,ierr)
 call MPI_SEND(tempx(1),m,MPI_REAL,0,1,
 & MPI_COMM_WORLD,ierr)
 call MPI_SEND(tempy(1),m,MPI_REAL,0,2,
 & MPI_COMM_WORLD,ierr)
 call MPI_SEND(tempz(1),m,MPI_REAL,0,3,
 & MPI_COMM_WORLD,ierr)
 end if
c--
c root receives temps from processes and stores it in temp1
c--
 if(myid.eq.0) then
 k=1
 do 3 j=1,size-1
 call MPI_RECV(temp1(k),sz,MPI_INTEGER,MPI_ANY_SOURCE,0,
 & MPI_COMM_WORLD,stats,ierr)
 iam=stats(MPI_SOURCE)
 call MPI_RECV(temp1x(k),sz,MPI_REAL,iam,1,
 & MPI_COMM_WORLD,stats,ierr)
 call MPI_RECV(temp1y(k),sz,MPI_REAL,iam,2,
 & MPI_COMM_WORLD,stats,ierr)
 call MPI_RECV(temp1z(k),sz,MPI_REAL,iam,3,
 & MPI_COMM_WORLD,stats,ierr)
 do 4 i=k,k+sz
 temp3=temp1(i)
 if(temp3.ne.0) then
 x(temp3)=temp1x(i)

www.manaraa.com

 71

 y(temp3)=temp1y(i)
 z(temp3)=temp1z(i)
 write(8,99)iclock,temp1(i),temp1x(i),temp1y(i),temp1z(i)
 end if
 4 continue
 k=k+sz
 3 continue
 end if
 call MPI_Barrier(MPI_COMM_WORLD,ierr)
c broadcast positions
 call MPI_Bcast(x,m,MPI_REAL,0,MPI_COMM_WORLD,ierr)
 call MPI_Bcast(y,m,MPI_REAL,0,MPI_COMM_WORLD,ierr)
 call MPI_Bcast(z,m,MPI_REAL,0,MPI_COMM_WORLD,ierr)
 1 continue
 call mpi_finalize(ierr)
 print*,'OUT OF PARALLEL WORLD WITH',ierr,'ERROR'
 stop
 end
c

	A PARALLEL MOLECULAR DYNAMICS PROGRAM FOR SIMULATION OF WATER IN ION CHANNELS
	Downloaded from

	Microsoft Word - thesis-1.doc

